150,723 research outputs found

    Optimal power control in Cognitive MIMO systems with limited feedback

    Full text link
    In this paper, the problem of optimal power allocation in Cognitive Radio (CR) Multiple Input Multiple Output (MIMO) systems is treated. The focus is on providing limited feedback solutions aiming at maximizing the secondary system rate subject to a constraint on the average interference caused to primary communication. The limited feedback solutions are obtained by reducing the information available at secondary transmitter (STx) for the link between STx and the secondary receiver (SRx) as well as by limiting the level of available information at STx that corresponds to the link between the STx and the primary receiver PRx. Monte Carlo simulation results are given that allow to quanitfy the performance achieved by the proposed algorithms

    Reinforcement-based data transmission in temporally-correlated fading channels: Partial CSIT scenario

    Get PDF
    Reinforcement algorithms refer to the schemes where the results of the previous trials and a reward-punishment rule are used for parameter setting in the next steps. In this paper, we use the concept of reinforcement algorithms to develop different data transmission models in wireless networks. Considering temporally-correlated fading channels, the results are presented for the cases with partial channel state information at the transmitter (CSIT). As demonstrated, the implementation of reinforcement algorithms improves the performance of communication setups remarkably, with the same feedback load/complexity as in the state-of-the-art schemes.Comment: Accepted for publication in ISWCS 201

    Green Communication via Power-optimized HARQ Protocols

    Get PDF
    Recently, efficient use of energy has become an essential research topic for green communication. This paper studies the effect of optimal power controllers on the performance of delay-sensitive communication setups utilizing hybrid automatic repeat request (HARQ). The results are obtained for repetition time diversity (RTD) and incremental redundancy (INR) HARQ protocols. In all cases, the optimal power allocation, minimizing the outage-limited average transmission power, is obtained under both continuous and bursting communication models. Also, we investigate the system throughput in different conditions. The results indicate that the power efficiency is increased substantially, if adaptive power allocation is utilized. For instance, assume Rayleigh-fading channel, a maximum of two (re)transmission rounds with rates {1,12}\{1,\frac{1}{2}\} nats-per-channel-use and an outage probability constraint 10−3{10}^{-3}. Then, compared to uniform power allocation, optimal power allocation in RTD reduces the average power by 9 and 11 dB in the bursting and continuous communication models, respectively. In INR, these values are obtained to be 8 and 9 dB, respectively.Comment: Accepted for publication on IEEE Transactions on Vehicular Technolog

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    Artificial-Noise-Aided Secure Multi-Antenna Transmission with Limited Feedback

    Full text link
    We present an optimized secure multi-antenna transmission approach based on artificial-noise-aided beamforming, with limited feedback from a desired single-antenna receiver. To deal with beamformer quantization errors as well as unknown eavesdropper channel characteristics, our approach is aimed at maximizing throughput under dual performance constraints - a connection outage constraint on the desired communication channel and a secrecy outage constraint to guard against eavesdropping. We propose an adaptive transmission strategy that judiciously selects the wiretap coding parameters, as well as the power allocation between the artificial noise and the information signal. This optimized solution reveals several important differences with respect to solutions designed previously under the assumption of perfect feedback. We also investigate the problem of how to most efficiently utilize the feedback bits. The simulation results indicate that a good design strategy is to use approximately 20% of these bits to quantize the channel gain information, with the remainder to quantize the channel direction, and this allocation is largely insensitive to the secrecy outage constraint imposed. In addition, we find that 8 feedback bits per transmit antenna is sufficient to achieve approximately 90% of the throughput attainable with perfect feedback.Comment: to appear in IEEE Transactions on Wireless Communication

    Thresholds Optimization for One-Bit Feedback Multi-User Scheduling

    Get PDF
    We propose a new one-bit feedback scheme with scheduling decision based on the maximum expected weighted rate. We show the concavity of the 22-user case and provide the optimal solution which achieves the maximum weighted rate of the users. For the general asymmetric M-user case, we provide a heuristic method to achieve the maximum expected weighted rate. We show that the sum rate of our proposed scheme is very close to the sum rate of the full channel state information case, which is the upper bound performance
    • …
    corecore