66 research outputs found

    Gear shift strategies for automotive transmissions

    Get PDF
    The development history of automotive engineering has shown the essential role of transmissions in road vehicles primarily powered by internal combustion engines. The engine with its physical constraints on the torque and speed requires a transmission to have its power converted to the drive power demand at the vehicle wheels. Under dynamic driving conditions, the transmission is required to shift in order to match the engine power with the changing drive power. Furthermore, a gear shift decision is expected to be consistent such that vehicle can remain in the next gear for a period of time without deteriorating the acceleration capability. Therefore, an optimal conversion of the engine power plays a key role in improving the fuel economy and driveability. Moreover, the consequences of the assumptions related to the discrete state variable-dependent losses, e.g. gear shifting, clutch slippage and engine starting, and their e¿ect on the gear shift control strategy are necessary to be analyzed to yield insights into the fuel usage. The ¿rst part of the thesis deals with the design of gear shift strategies for electronically controlled discrete ratio transmissions used in both conventional vehicles and Hybrid Electric Vehicles (HEVs). For conventional vehicles, together with the fuel economy, the driveability is systematically addressed in a Dynamic Programming (DP) based optimal gear shift strategy by three methods: i) the weighted inverse of the power re¬serve, ii) the constant power reserve, and iii) the variable power reserve. In addition, a Stochastic Dynamic Programming (SDP) algorithm is utilized to optimize the gear shift strategy, subject to a stochastic distribution of the power request, in order to minimize the expected fuel consumption over an in¿nite horizon. Hence, the SDP-based gear shift strategy intrinsically respects the driveability and is realtime implementable. By per¬forming a comparative analysis of all proposed gear shift methods, it is shown that the variable power reserve method achieves the highest fuel economy without deteriorating the driveability. Moreover, for HEVs, a novel fuel-optimal control algorithm, consist-ing of the continuous power split and discrete gear shift, engine on-o¿ problems, based on a combination of DP and Pontryagin’s Minimum Principle (PMP) is developed for the corresponding hybrid dynamical system. This so-called DP-PMP gear shift control approach benchmarks the development of an online implementable control strategy in terms of the optimal tradeo¿ between calculation accuracy and computational e¿ciency. Driven by an ultimate goal of realizing an online gear shift strategy, a gear shift map design methodology for discrete ratio transmissions is developed, which is applied for both conventional vehicles and HEVs. The design methodology uses an optimal gear shift algorithm as a basis to derive the optimal gear shift patterns. Accordingly, statis¬tical theory is applied to analyze the optimal gear shift pattern in order to extract the time-invariant shift rules. This alternative two-step design procedure makes the gear shift map: i) respect the fuel economy and driveability, ii) be consistent and robust with respect to shift busyness, and iii) be realtime implementation. The design process is ¿exible and time e¿cient such that an applicability to various powertrain systems con¿gured with discrete ratio transmissions is possible. Furthermore, the study in this thesis addresses the trend of utilizing the route information in the powertrain control system by proposing an integrated predictive gear shift strategy concept, consisting of a velocity algorithm and a predictive algorithm. The velocity algorithm improves the fuel economy in simulation considerably by proposing a fuel-optimal velocity trajectory over a certain driving horizon for the vehicle to follow. The predictive algorithm suc¬cessfully utilizes a prede¿ned velocity pro¿le over a certain horizon in order to realize a fuel economy improvement very close to that of the globally optimal algorithm (DP). In the second part of the thesis, the energetic losses, involved with the gear shift and engine start events in an automated manual transmission-based HEV, are modeled. The e¿ect of these losses on the control strategies and fuel consumption for (non-)powershift transmission technologies is investigated. Regarding the gear shift loss, the study ¿rstly ever discloses a perception of a fuel-e¿cient advantage of the powershift transmissions over the non-powershift ones applied for commercial vehicles. It is also shown that the engine start loss can not be ignored in seeking for a fair evaluation of the fuel economy. Moreover, the sensitivity study of the fuel consumption with respect to the prediction horizon reveals that a predictive energy management strategy can realize the highest achievable fuel economy with a horizon of a few seconds ahead. The last part of the thesis focuses on investigating the sensitivity of an optimal gear shift strategy to the relevant control design objectives, i.e. fuel economy, driveability and comfort. A singu¬lar value decomposition based method is introduced to analyze the possible correlations and interdependencies among the design objectives. This allows that some of the pos¬sible dependent design objective(s) can be removed from the objective function of the corresponding optimal control problem, hence thereby reducing the design complexity

    Integration of dual-clutch transmissions in hybrid electric vehicle powertrains

    Get PDF
    This dissertation presents a study focused on exploring the integration of Dual-Clutch Transmissions (DCTs) in Hybrid Electric Vehicles (HEVs). Among the many aspects that could be investigated regarding the electrification of DCTs, research efforts are undertaken here to the development of control strategies for improving vehicle dynamic performance during gearshifts and the energy management of HEVs. In the first part of the dissertation, control algorithms for upshift and downshift maneuvers are developed for a Plug-in Hybrid Electric Vehicle (PHEV) architecture in which an electric machine is connected to the output of the transmission, thus obtaining torque filling capabilities during gearshifts. Promising results, in terms of the vehicle dynamic performance, are obtained for the two transmission systems analyzed: Hybrid Automated Manual Transmission (H-AMT) and Hybrid Dual-Clutch Transmission (H-DCT). On the other hand, the global optimal solution to the energy management problem for a PHEV equipped with a DCT is found by developing a detailed Dynamic Programing (DP) formulation. The main control objective is to reduce the fuel consumption during a driving mission. Based on the DP results, a novel real-time implementable Energy Management Strategy (EMS) is proposed. The performance of such controller, in terms of the overall fuel usage, is close to that of the optimal solution. Furthermore, the developed approach is shown to outperform a well-known causal strategy: Adaptive Equivalent Consumption Minimization Strategy (A-ECMS). One of the main aspects that differentiates the EMSs proposed here to those presented in previous works is the introduction of a model to estimate the energy consumption during gearshifts in DCTs. Thus, this dissertation illustrates how through the electrification of powertrains equipped with DCTs both the vehicle dynamic performance and the energy consumption can be improved

    Energy management and shifting stability control for a novel dual input clutchless transmission system

    Full text link
    © 2019 Elsevier Ltd A dual input clutchless transmission system based on automated manual transmission (AMT) structure is developed for pure electric vehicles. An energy management strategy (EMS) is proposed to determine the power distribution between two motors and the optimal gear state. A mathematical model is built to minimize the energy consumption of the motors at each instant based on the motor efficiency maps. However, the proposed EMS in line with other energy-oriented strategies often result in excessive gear shifts and compromised drivability. To avoid the undesired gear shift, a shifting stabilizer is built in the EMS objective function to improve the shift quality. Accordingly, to achieve a balance between the energy consumption and the drivability, a multi-objective optimization method is adopted to reduce the unnecessary shift events while minimizing energy consumption. Two driving cycles representing typical daily driving conditions are used to demonstrate the effectiveness of the proposed system in terms of energy efficiency and shifting stability

    Adaptive Equivalent Consumption Minimization Strategy with Rule-based Gear Selection for the Energy Management of Hybrid Electric Vehicles Equipped with Dual Clutch Transmissions

    Get PDF
    Based on observations of the behaviour of the optimal solution to the problem of energy management for plug-in hybrid electric vehicles, a novel real-time Energy Management Strategy (EMS) is proposed. In particular, dynamic programming results are used to derive a set of rules aiming at reproducing the optimal gearshift schedule in electric mode while the Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) is employed to decide the powertrain operating mode and the current gear when power from the internal combustion engine is needed. In terms of total fuel consumption, simulations show that the proposed approach yields results that are close to the optimal solution and also outperforms those of the A-ECMS, a well-known EMS. One of the main aspects that differentiates the strategy here proposed from previous works is the introduction of a model to use physical considerations to estimate the energy consumption during gearshifts in dual-clutch transmissions. This, together with a series of properly tuned fuel penalties allows the controller to yield results in which there is no gear hunting behaviour

    Computationally Efficient Energy Management in Hybrid Electric Vehicles Based on Approximate Pontryagin’s Minimum Principle

    Get PDF
    This article presents an energy management method for a parallel hybrid electric vehicle (HEV) based on approximate Pontryagin’s Minimum Principle (A-PMP). The A-PMP optimizes gearshift commands and torque distribution for overall energy efficiency. As a practical numerical solution in PMP, the proposed methodology utilizes a piecewise linear approximation of the engine fuel rate and state of charge (SOC) derivative by considering drivability and fuel economy simultaneously. Moreover, battery aging is explicitly studied by introducing a control-oriented model, which aims to investigate the effect of battery aging on the optimization performance in the development of the HEVs. An approximate energy management strategy with piecewise linear models is then formulated by the A-PMP, which targets a better performance for the Hamiltonian optimization. The gearshift map is extracted from the optimal results in the standard PMP to hinder frequent gearshift by considering both drivability and fuel economy. Utilizing an approximated Hamilton function, the torque distribution, gearshift command, and the battery aging degradation are jointly optimized under a unified framework. Simulations are performed for dynamic programming (DP), PMP, and A-PMP to validate the effectiveness of the proposed approach. The results indicate that the proposed methodology achieves a close fuel economy compared with the DP-based optimal solution. Moreover, it improves the computation efficiency by 50% and energy saving by 3.5%, compared with the PMP, while ensuring good drivability and fuel efficiency. Document type: Articl

    Online Ecological Gearshift Strategy via Neural Network with Soft-Argmax Operator

    Full text link
    This paper presents a neural network optimizer with soft-argmax operator to achieve an ecological gearshift strategy in real-time. The strategy is reformulated as the mixed-integer model predictive control (MIMPC) problem to minimize energy consumption. Then the outer convexification is introduced to transform integer variables into relaxed binary controls. To approximate binary solutions properly within training, the soft-argmax operator is applied to the neural network with the fact that all the operations of this scheme are differentiable. Moreover, this operator can help push the relaxed binary variables close to 0 or 1. To evaluate the strategy effect, we deployed it to a 2-speed electric vehicle (EV). In contrast to the mature solver Bonmin, our proposed method not only achieves similar energy-saving effects but also significantly reduces the solution time to meet real-time requirements. This results in a notable energy savings of 6.02% compared to the rule-based method.Comment: 6 pages, 5 figures, submitted to 8th IFAC Conference on Nonlinear Model Predictive Contro

    Optimization of shift schedule for hybrid electric vehicle with automated manual transmission

    Get PDF
    Currently, most hybrid electric vehicles (HEVs) equipped with automated mechanical transmission (AMT) are implemented with the conventional two-parameter gear shift schedule based on engineering experience. However, this approach cannot take full advantage of hybrid drives. In other words, the powertrain of an HEV is not able to work at the best fuel-economy points during the whole driving profile. To solve this problem, an optimization method of gear shift schedule for HEVs is proposed based on Dynamic Programming (DP) and a corresponding solving algorithm is also put forward. A gear shift schedule that can be employed in real-vehicle is extracted from the obtained optimal gear shift points by DP approach and is optimized based on analysis of the engineering experience in a typical Chinese urban driving cycle. Compared with the conventional two-parameter gear shift schedule in both simulation and real vehicle experiments, the extracted gear shift schedule is proved to clearly improve the fuel economy of the HEV

    Real-time Predictive Energy Management of Hybrid Electric Heavy Vehicles by Sequential Programming

    Get PDF
    With the objective of reducing fuel consumption, this paper presents real-time predictive energy management of hybrid electric heavy vehicles. We propose an optimal control strategy that determines the power split between different vehicle power sources and brakes. Based on the model predictive control (MPC) and sequential programming, the optimal trajectories of the vehicle velocity and battery state of charge are found for upcoming horizons with a length of 5-20 km. Then, acceleration and brake pedal positions together with the battery usage are regulated to follow the requested speed and state of charge that is verified using a vehicle plant model. The main contribution of this paper is the development of a sequential linear program for predictive energy management that is faster and simpler than sequential quadratic programming in tested solvers and gives trajectories that are very close to the best trajectories found by nonlinear programming. The performance of the method is also compared to two different sequential quadratic programs

    Numerical Strategies for Mixed-Integer Optimization of Power-Split and Gear Selection in Hybrid Electric Vehicles

    Get PDF
    This paper presents numerical strategies for a computationally efficient energy management system that co-optimizes the power split and gear selection of a hybrid electric vehicle (HEV). We formulate a mixed-integer optimal control problem (MIOCP) that is transcribed using multiple-shooting into a mixed-integer nonlinear program (MINLP) and then solved by nonlinear model predictive control. We present two different numerical strategies, a Selective Relaxation Approach (SRA), which decomposes the MINLP into several subproblems, and a Round-n-Search Approach (RSA), which is an enhancement of the known ‘relax-n-round’ strategy. Subsequently, the resulting algorithmic performance and optimality of the solution of the proposed strategies are analyzed against two benchmark strategies; one using rule-based gear selection, which is typically used in production vehicles, and the other using dynamic programming (DP), which provides a global optimum of a quantized version of the MINLP. The results show that both SRA and RSA enable about\ua03.6%\ua0cost reduction compared to the rule-based strategy, while still being within\ua01%\ua0of the DP solution. Moreover, for the case studied RSA takes about\ua035%\ua0less mean computation time compared to SRA, while both SRA and RSA being about\ua099\ua0times faster than DP. Furthermore, both SRA and RSA were able to overcome the infeasibilities encountered by a typical rounding strategy under different drive cycles. The results show the computational benefit of the proposed strategies, as well as the energy saving possibility of co-optimization strategies in which actuator dynamics are explicitly included
    corecore