7,295 research outputs found

    Bayesian Design of Tandem Networks for Distributed Detection With Multi-bit Sensor Decisions

    Full text link
    We consider the problem of decentralized hypothesis testing under communication constraints in a topology where several peripheral nodes are arranged in tandem. Each node receives an observation and transmits a message to its successor, and the last node then decides which hypothesis is true. We assume that the observations at different nodes are, conditioned on the true hypothesis, independent and the channel between any two successive nodes is considered error-free but rate-constrained. We propose a cyclic numerical design algorithm for the design of nodes using a person-by-person methodology with the minimum expected error probability as a design criterion, where the number of communicated messages is not necessarily equal to the number of hypotheses. The number of peripheral nodes in the proposed method is in principle arbitrary and the information rate constraints are satisfied by quantizing the input of each node. The performance of the proposed method for different information rate constraints, in a binary hypothesis test, is compared to the optimum rate-one solution due to Swaszek and a method proposed by Cover, and it is shown numerically that increasing the channel rate can significantly enhance the performance of the tandem network. Simulation results for MM-ary hypothesis tests also show that by increasing the channel rates the performance of the tandem network significantly improves

    Joint Power Control and Fronthaul Rate Allocation for Throughput Maximization in OFDMA-based Cloud Radio Access Network

    Full text link
    The performance of cloud radio access network (C-RAN) is constrained by the limited fronthaul link capacity under future heavy data traffic. To tackle this problem, extensive efforts have been devoted to design efficient signal quantization/compression techniques in the fronthaul to maximize the network throughput. However, most of the previous results are based on information-theoretical quantization methods, which are hard to implement due to the extremely high complexity. In this paper, we consider using practical uniform scalar quantization in the uplink communication of an orthogonal frequency division multiple access (OFDMA) based C-RAN system, where the mobile users are assigned with orthogonal sub-carriers for multiple access. In particular, we consider joint wireless power control and fronthaul quantization design over the sub-carriers to maximize the system end-to-end throughput. Efficient algorithms are proposed to solve the joint optimization problem when either information-theoretical or practical fronthaul quantization method is applied. Interestingly, we find that the fronthaul capacity constraints have significant impact to the optimal wireless power control policy. As a result, the joint optimization shows significant performance gain compared with either optimizing wireless power control or fronthaul quantization alone. Besides, we also show that the proposed simple uniform quantization scheme performs very close to the throughput performance upper bound, and in fact overlaps with the upper bound when the fronthaul capacity is sufficiently large. Overall, our results would help reveal practically achievable throughput performance of C-RAN, and lead to more efficient deployment of C-RAN in the next-generation wireless communication systems.Comment: submitted for possible publicatio

    Power and Bandwidth Efficient Coded Modulation for Linear Gaussian Channels

    Get PDF
    A scheme for power- and bandwidth-efficient communication on the linear Gaussian channel is proposed. A scenario is assumed in which the channel is stationary in time and the channel characteristics are known at the transmitter. Using interleaving, the linear Gaussian channel with its intersymbol interference is decomposed into a set of memoryless subchannels. Each subchannel is further decomposed into parallel binary memoryless channels, to enable the use of binary codes. Code bits from these parallel binary channels are mapped to higher-order near-Gaussian distributed constellation symbols. At the receiver, the code bits are detected and decoded in a multistage fashion. The scheme is demonstrated on a simple instance of the linear Gaussian channel. Simulations show that the scheme achieves reliable communication at 1.2 dB away from the Shannon capacity using a moderate number of subchannels

    Joint Design of Overlaid Communication Systems and Pulsed Radars

    Full text link
    The focus of this paper is on co-existence between a communication system and a pulsed radar sharing the same bandwidth. Based on the fact that the interference generated by the radar onto the communication receiver is intermittent and depends on the density of scattering objects (such as, e.g., targets), we first show that the communication system is equivalent to a set of independent parallel channels, whereby pre-coding on each channel can be introduced as a new degree of freedom. We introduce a new figure of merit, named the {\em compound rate}, which is a convex combination of rates with and without interference, to be optimized under constraints concerning the signal-to-interference-plus-noise ratio (including {\em signal-dependent} interference due to clutter) experienced by the radar and obviously the powers emitted by the two systems: the degrees of freedom are the radar waveform and the afore-mentioned encoding matrix for the communication symbols. We provide closed-form solutions for the optimum transmit policies for both systems under two basic models for the scattering produced by the radar onto the communication receiver, and account for possible correlation of the signal-independent fraction of the interference impinging on the radar. We also discuss the region of the achievable communication rates with and without interference. A thorough performance assessment shows the potentials and the limitations of the proposed co-existing architecture

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements

    Cloud-aided wireless systems: communications and radar applications

    Get PDF
    This dissertation focuses on cloud-assisted radio technologies for communication, including mobile cloud computing and Cloud Radio Access Network (C-RAN), and for radar systems. This dissertation first concentrates on cloud-aided communications. Mobile cloud computing, which allows mobile users to run computationally heavy applications on battery limited devices, such as cell phones, is considered initially. Mobile cloud computing enables the offloading of computation-intensive applications from a mobile device to a cloud processor via a wireless interface. The interplay between offloading decisions at the application layer and physical-layer parameters, which determine the energy and latency associated with the mobile-cloud communication, motivates the inter-layer optimization of fine-grained task offloading across both layers. This problem is modeled by using application call graphs, and the joint optimization of application-layer and physical-layer parameters is carried out via a message passing algorithm by minimizing the total energy expenditure of the mobile user. The concept of cloud radio is also being considered for the development of two cellular architectures known as Distributed RAN (D-RAN) and C-RAN, whereby the baseband processing of base stations is carried out in a remote Baseband Processing Unit (BBU). These architectures can reduce the capital and operating expenses of dense deployments at the cost of increasing the communication latency. The effect of this latency, which is due to the fronthaul transmission between the Remote Radio Head (RRH) and the BBU, is then studied for implementation of Hybrid Automatic Repeat Request (HARQ) protocols. Specifically, two novel solutions are proposed, which are based on the control-data separation architecture. The trade-offs involving resources such as the number of transmitting and receiving antennas, transmission power and the blocklength of the transmitted codeword, and the performance of the proposed solutions is investigated in analysis and numerical results. The detection of a target in radar systems requires processing of the signal that is received by the sensors. Similar to cloud radio access networks in communications, this processing of the signals can be carried out in a remote Fusion Center (FC) that is connected to all sensors via limited-capacity fronthaul links. The last part of this dissertation is dedicated to exploring the application of cloud radio to radar systems. In particular, the problem of maximizing the detection performance at the FC jointly over the code vector used by the transmitting antenna and over the statistics of the noise introduced by quantization at the sensors for fronthaul transmission is investigated by adopting the information-theoretic criterion of the Bhattacharyya distance and information-theoretic bounds on the quantization rate

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Symbol-Level Selective Full-Duplex Relaying with Power and Location Optimization

    Get PDF
    In this paper, a symbol-level selective transmission for full-duplex (FD) relaying networks is proposed to mitigate error propagation effects and improve system spectral efficiency. The idea is to allow the FD relay node to predict the correctly decoded symbols of each frame, based on the generalized square deviation method, and discard the erroneously decoded symbols, resulting in fewer errors being forwarded to the destination node. Using the capability for simultaneous transmission and reception at the FD relay node, our proposed strategy can improve the transmission efficiency without extra cost of signalling overhead. In addition, targeting on the derived expression for outage probability, we compare it with half-duplex (HD) relaying case, and provide the transmission power and relay location optimization strategy to further enhance system performance. The results show that our proposed scheme outperforms the classic relaying protocols, such as cyclic redundancy check based selective decode-and-forward (S-DF) relaying and threshold based S-DF relaying in terms of outage probability and bit-error-rate. Moreover, the performances with optimal power allocation is better than that with equal power allocation, especially when the FD relay node encounters strong self-interference and/or it is close to the destination node.Comment: 34 pages (single-column), 14 figures, 2 tables, accepted pape
    corecore