3 research outputs found

    Etude de la variabilité en technologie FDSOI : du transistor aux cellules mémoires SRAM

    No full text
    The scaling of bulk MOSFETs transistors is facing various difficulties at the nanometer era. The variability of the electrical characteristics becomes a major challenge which increases as the device dimensions are scaled down. Fully-Depleted Silicon On Insulator (FDSOI) technology, developed as an alternative to bulk transistors, exhibits a better electrostatic immunity which enables higher performances. Moreover, the reduction of the Random Dopant Fluctuation allows excellent variability immunity for the FDSOI technology due to its undoped channel. It leads to a yield enhancement and a reduction of the minimum supply voltage of SRAM circuits. The variability has been analyzed deeply during this thesis in this technology, both on the threshold voltage (VT) and on the ON-state current (ISAT). The correlation between the electrical characteristics of MOSFETs devices (i.e., the threshold voltage and the standard deviation σVT) and SRAM cells (i.e., the SNM and σSNM) has been investigated thanks to an extensive experimental study and modeling. This purpose of this thesis is also to analyze the specific FDSOI variability source: silicon thickness fluctuations. An analytical model has been developed in order to quantify the impact of local TSi variations on the VT variability for 28 and 20nm technology nodes, as well as on a 200Mb SRAM array. This model also enables to evaluate the silicon thickness mean (µTsi) and standard deviation (σTsi) specifications for next technology nodes.La miniaturisation des transistors MOSFETs sur silicium massif présente de nombreux enjeux en raison de l'apparition de phénomènes parasites. Notamment, la réduction de la surface des dispositifs entraîne une dégradation de la variabilité de leurs caractéristiques électriques. La technologie planaire totalement désertée, appelée communément FDSOI (pour Fully Depleted Silicon on Insulator), permet d'améliorer le contrôle électrostatique de la grille sur le canal de conduction et par conséquent d'optimiser les performances. De plus, de par la présence d'un canal non dopé, il est possible de réduire efficacement la variabilité de la tension de seuil des transistors. Cela se traduit par un meilleur rendement et par une diminution de la tension minimale d'alimentation des circuits SRAM (pour Static Random Access Memory). Une étude détaillée de la variabilité intrinsèque à cette technologie a été réalisée durant ce travail de recherche, aussi bien sur la tension de seuil (VT) que sur le courant de drain à l'état passant (ISAT). De plus, le lien existant entre la fluctuation des caractéristiques électriques des transistors et des circuits SRAM a été expérimentalement analysé en détail. Une large partie de cette thèse est enfin dédiée à l'investigation de la source de variabilité spécifique à la technologie FDSOI : les fluctuations de l'épaisseur du film de silicium. Un modèle analytique a été développé durant cette thèse afin d'étudier l'influence des fluctuations locales de TSi sur la variabilité de la tension de seuil des transistors pour les nœuds technologiques 28 et 20nm, ainsi que sur un circuit SRAM de 200Mb. Ce modèle a également pour but de fournir des spécifications en termes d'uniformité σTsi et d'épaisseur moyenne µTsi du film de silicium pour les prochains nœuds technologiques

    Caractérisation et modélisation de la fiabilité relative au piégeage dans des transistors décananométriques et des mémoires SRAM en technologie FDSOI

    Get PDF
    Nowadays, microelectronic industry is able to manufacture transistors with gate length down to 30nm.At such scales, the variability and reliability issues are a growing concern. Hence, understanding the interplaybetween these two concerns is essential to guarantee good lifetime estimation of the devices. Currently, theBias Temperature Instability (BTI), which is mostly due to the carrier trapping occurring in the gate oxide,appears to be the principal source of degradation responsible for the ageing of transistor device. Thismanuscript presents a complete study of the BTI degradation occurring on small and big transistors and onStatic Random Access Memory (SRAM) cells. Thus, as a first step, several electrical characterization techniquesto evaluate the BTI degradation are presented. The necessity of fast measurement in order to avoid most of therelaxation effect occurring after the BTI stress is emphasized. Then, using these fast measurement techniques,a complete study of the Negative BTI (NBTI) on large devices is presented. Then, the manuscript focuses on thesmall devices: transistors and memory cells. First, a modeling of the trapping mechanism in the gate oxide ofsmall transistor is presented. In particular, 3D electrostatic simulations allowed us to understand the particularinfluence of the traps over the threshold voltage (VT) of the small transistors. Finally, the case of the SRAM isstudied. Finally, the impact of the degradation occurring at transistor level and impacting the functioning of theSRAM bitcells is investigated.L’industrie microélectronique arrive aujourd’hui à concevoir des transistors atteignant quelquesdizaines de nanomètres. A de telles dimensions, les problématiques de fiabilité et de variabilité des dispositifsprennent une ampleur toujours plus importante. Notamment, le couplage de ces deux difficultés nécessite uneétude approfondie pour garantir des estimations correctes de la durée de vie des dispositifs. Aujourd’hui, ladégradation BTI (pour Bias Temperature Instability), due principalement aux mécanismes de piégeage dansl’oxyde de grille, apparait comme étant la principale source de dégradation responsable du vieillissement destransistors. Ce manuscrit présente une étude complète de la dégradation BTI intervenant sur des transistors depetites et grandes dimensions et sur des cellules mémoires SRAM (pour Static Random Access Memory). Dansun premier temps, une présentation des différentes méthodes de caractérisations rapides permettant demesurer correctement cette dégradation est faite. L’importance de l’utilisation de techniques de mesuresrapides afin de limiter les effets de relaxation qui succèdent à la dégradation BTI est clairement exposée. Puis, àl’aide de ces techniques de mesures, une étude exclusivement consacrée à la caractérisation et la modélisationde la dégradation NBTI (pour Negative BTI) sur des dispositifs de grandes dimensions est réalisée. Ensuite, lemanuscrit se focalise sur la dégradation intervenant dans des dispositifs de petites dimensions : transistors etcellules mémoires. Tout d’abord, une modélisation des phénomènes de piégeages dans l’oxyde de grille depetits transistors est effectuée. En particulier, des simulations 3D électrostatiques ont permis d’expliquerl’influence des pièges d’oxyde sur la tension de seuil (VT) dans des transistors décananométriques. Enfin, uneétude de la fiabilité de cellules SRAM est présentée. Notamment, nous montrons comment évoluent lesperformances et le fonctionnement des cellules lorsque les transistors qui les constituent sont affectés par unedégradation BTI

    Optimization of Trigate-On-Insulator MOSFET aspect ratio with MASTAR

    No full text
    session C2L-D: Modeling of Important Issues for Main Stream Silicon DevicesInternational audienceIn this work, the optimum design of Trigate-on-Insulator MOSFET devices is investigated with the MASTAR platform, focusing on the channel aspect ratio. First, the MAS-TAR Trigate model is described, and new components are validated with TCAD simulations. Using the verilog-A implementation of this model, SPICE simulations of inverter chains are later performed to analyze the device performance, employing different power reduction techniques. Finally, the variability issue is addressed with Monte-Carlo simulations of 6T SRAM cells
    corecore