2,204 research outputs found

    Photonic integration enabling new multiplexing concepts in optical board-to-board and rack-to-rack interconnects

    Get PDF
    New broadband applications are causing the datacenters to proliferate, raising the bar for higher interconnection speeds. So far, optical board-to-board and rack-to-rack interconnects relied primarily on low-cost commodity optical components assembled in a single package. Although this concept proved successful in the first generations of optical-interconnect modules, scalability is a daunting issue as signaling rates extend beyond 25 Gb/s. In this paper we present our work towards the development of two technology platforms for migration beyond Infiniband enhanced data rate (EDR), introducing new concepts in board-to-board and rack-to-rack interconnects. The first platform is developed in the framework of MIRAGE European project and relies on proven VCSEL technology, exploiting the inherent cost, yield, reliability and power consumption advantages of VCSELs. Wavelength multiplexing, PAM-4 modulation and multi-core fiber (MCF) multiplexing are introduced by combining VCSELs with integrated Si and glass photonics as well as BiCMOS electronics. An in-plane MCF-to-SOI interface is demonstrated, allowing coupling from the MCF cores to 340x400 nm Si waveguides. Development of a low-power VCSEL driver with integrated feed-forward equalizer is reported, allowing PAM-4 modulation of a bandwidth-limited VCSEL beyond 25 Gbaud. The second platform, developed within the frames of the European project PHOXTROT, considers the use of modulation formats of increased complexity in the context of optical interconnects. Powered by the evolution of DSP technology and towards an integration path between inter and intra datacenter traffic, this platform investigates optical interconnection system concepts capable to support 16QAM 40GBd data traffic, exploiting the advancements of silicon and polymer technologies

    Performance analysis of pre-equalized multilevel partial response schemes

    Get PDF
    In order to achieve high speed on electrical interconnects, channel attenuation at high frequencies must be dealt with by proper transceiver design. In this paper we investigate finite-complexity MMSE pre-equalization under an average transmit power constraint, to compensate for channel distortion in the case of both full-response and precoded partial response signaling with L-PAM mapping, and consider the resulting error performance for symbol-by-symbol detection and sequence detection. For a representative electrical interconnect, we point out that the constellation size (2-PAM or 4-PAM), the type of signaling (full response or partial response), the detection method (symbol-by-symbol detection or sequence detection) and the number of pre-equalizer taps should be carefully selected in order to achieve satisfactory error performance at high data rates. For several scenarios, precoded duobinary 4-PAM is found to yield the best error performance for given average transmit power

    Cycle-accurate evaluation of reconfigurable photonic networks-on-chip

    Get PDF
    There is little doubt that the most important limiting factors of the performance of next-generation Chip Multiprocessors (CMPs) will be the power efficiency and the available communication speed between cores. Photonic Networks-on-Chip (NoCs) have been suggested as a viable route to relieve the off- and on-chip interconnection bottleneck. Low-loss integrated optical waveguides can transport very high-speed data signals over longer distances as compared to on-chip electrical signaling. In addition, with the development of silicon microrings, photonic switches can be integrated to route signals in a data-transparent way. Although several photonic NoC proposals exist, their use is often limited to the communication of large data messages due to a relatively long set-up time of the photonic channels. In this work, we evaluate a reconfigurable photonic NoC in which the topology is adapted automatically (on a microsecond scale) to the evolving traffic situation by use of silicon microrings. To evaluate this system's performance, the proposed architecture has been implemented in a detailed full-system cycle-accurate simulator which is capable of generating realistic workloads and traffic patterns. In addition, a model was developed to estimate the power consumption of the full interconnection network which was compared with other photonic and electrical NoC solutions. We find that our proposed network architecture significantly lowers the average memory access latency (35% reduction) while only generating a modest increase in power consumption (20%), compared to a conventional concentrated mesh electrical signaling approach. When comparing our solution to high-speed circuit-switched photonic NoCs, long photonic channel set-up times can be tolerated which makes our approach directly applicable to current shared-memory CMPs

    Low-Power, High-Speed Transceivers for Network-on-Chip Communication

    Get PDF
    Networks on chips (NoCs) are becoming popular as they provide a solution for the interconnection problems on large integrated circuits (ICs). But even in a NoC, link-power can become unacceptably high and data rates are limited when conventional data transceivers are used. In this paper, we present a low-power, high-speed source-synchronous link transceiver which enables a factor 3.3 reduction in link power together with an 80% increase in data-rate. A low-swing capacitive pre-emphasis transmitter in combination with a double-tail sense-amplifier enable speeds in excess of 9 Gb/s over a 2 mm twisted differential interconnect, while consuming only 130 fJ/transition without the need for an additional supply. Multiple transceivers can be connected back-to-back to create a source-synchronous transceiver-chain with a wave-pipelined clock, operating with 6sigma offset reliability at 5 Gb/s

    Equalization of multi-Gb/s chip-to-chip interconnects affected by manufacturing tolerances

    Get PDF
    Electrical chip-to-chip interconnects suffer from considerable intersymbol interference at multi-Gb/s data rates, due to the frequency-dependent attenuation. Hence, reliable communication at high data rates requires equalization, to compensate for the channel response. As these interconnects are prone to manufacturing tolerances, the equalizer must be adjusted to each specific channel realization to perform optimally. We adopt a reduced-complexity equalization scheme where (part of) the equalizer is fixed, by involving the channel statistics into the equalizer derivation. For a 10 cm on-board microstrip interconnect with a 10% tolerance on its parameters, we point out that 2-PAM transmission using a fixed prefilter and an adjustable feedback filter, both with few taps, yields only a moderate bit error rate degradation, compared to the all-adjustable equalizer; at a bit error rate of 1e-12 these degradations are about 1.1  dB and 3  dB, when operating at 20 Gb/s and 80 Gb/s, respectively
    • …
    corecore