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Abstract

Electrical chip-to-chip interconnects suffer from considerable intersymbol interference

at multi-Gb/s data rates, due to the frequency-dependent attenuation. Hence, reliable

communication at high data rates requires equalization, to compensate for the channel

response. As these interconnects are prone to manufacturing tolerances, the equalizer

must be adjusted to each specific channel realization to perform optimally. We adopt a

reduced-complexity equalization scheme where (part of) the equalizer is fixed, by involv-

ing the channel statistics into the equalizer derivation. For a 10 cm on-board microstrip

interconnect with a 10% tolerance on its parameters, we point out that 2-PAM transmis-

sion using a fixed prefilter and an adjustable feedback filter, both with few taps, yields

only a moderate bit error rate degradation, compared to the all-adjustable equalizer; at

a bit error rate of 10−12, these degradations are about 1.1 dB and 3 dB, when operating

at 20 Gb/s and 80 Gb/s, respectively.
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1. Introduction

As predicted by Moore’s law in 1965, the number of transistors on integrated circuits

doubles roughly every two years. In order to exploit this drastic increase in on-chip

processing power, the communication speed on the interconnection between chips should

grow at the same pace, otherwise it becomes the system bottleneck. Chip-to-chip com-

munication commonly makes use of electrical interconnects consisting of microstrips or

striplines of several tens of cm of length, on a printed circuit board (PCB). Examples of

chip-to-chip interconnects can be found in processor-to-memory interfaces [1], and in the

multi-layer backplanes of server/router systems and multi-processor systems.

In order to achieve higher bitrates, higher signal bandwidths are required on the chip-

to-chip interconnection. However, the electrical interconnects suffer from attenuation

caused by skin effect and dielectric loss, which increase with the signal frequency. These

frequency-dependent losses turn the communication channel into a low-pass channel with

a high-frequency attenuation that increases with distance [2], causing considerable inter-

symbol interference (ISI) at the input of the receiver (RX).

Currently, the main research focus in signal processing for electrical chip-to-chip inter-

connects is on reducing the ISI by compensating the frequency-dependent channel charac-

teristic, using equalization. Data rates near 10 Gb/s per line are currently achieved using

decision-feedback equalization (DFE) with a power consumption of about 1 mW/Gb/s

[3–7]. Recent research (e.g., [7–10]) deals with increasing this speed up to 25 Gb/s per

line, whereas speeds up to 100 Gb/s per line are targeted in the (near) future [11].

As the production of chip-to-chip interconnects is prone to manufacturing tolerances,

the different realizations of the same interconnect are not identical. Ideally, the equal-

izer coefficients should be adjusted according to the specific realization. In principle, this

could be achieved by measuring for each realization the corresponding frequency response

of the interconnect, and adjusting the equalizer according to the measurement. A major

disadvantages of this approach is the need for (time-consuming) measurements. These

measurements could be avoided by using an adaptive equalizer, whose setting is auto-
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matically adjusted according to the specific realization; however, this approach increases

the implementation complexity because of the required adaptation circuit.

In this contribution we adopt a different approach, by keeping (part of) the equalizer

fixed. The fixed (part of the) equalizer is set during the production process, and is deter-

mined based on the statistical properties of the channel. More specifically, the considered

equalizer consists of a tapped delay-line prefilter (PRF) at the transmitter (TX) (which

is feasible for multi-Gb/s data transmission [12]), and a feedback filter (FBF) operating

on past symbol decisions at the RX. We investigate three equalization strategies: (i) the

reference case, where both the PRF and the FBF are adjustable; (ii) the low-complexity

approach, where both the PRF and the FBF are fixed; (iii) an intermediate approach,

where the PRF is fixed but the FBF is adjustable. While strategy (i) constitutes the

standard approach from literature when dealing with channel variability, the strategies

(ii) and (iii) have, to the best of our knowledge, been investigated for the first time in

[13]. The present paper extends the results from [13] in the following ways: a more

comprehensive derivation of the optimum taps of the PRF and FBF is presented, the tap

spacing of the PRF is not restricted to the symbol interval, the sampling delay at the

RX is optimized, and the performance is evaluated for two levels of channel variability.

The organization of the paper is as follows. A generic baseband communication

system, consisting of a PRF and a DFE, is described in section 2. In section 3 we

determine the filter coefficients of the equalizer which minimize the mean-squared error

(MSE) between the equalizer output and the symbol to be detected, under a constraint on

the transmit energy per symbol. While the minimization of the MSE is standard for the

reference case, the situation is different when (part of) the equalizer is fixed; in the latter

case, we have to incorporate the statistical properties of the channel into the MSE to be

minimized. The bit error rate (BER) performance of the equalized communication system

is derived in section 4, for 2-PAM transmission. Numerical results regarding the minimal

mean-squared error (MMSE) and BER performances are presented in section 5, for a

chip-to-chip interconnect, with manufacturing tolerances on its parameters. The channel
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frequency responses corresponding to the different realizations of these parameters are

generated by making use of polynomial chaos theory, as outlined in [14–16]. Conclusions

are drawn in section 6. One of the main conclusions is that the equalizer with fixed

PRF and adjustable FBF has only a small degradation compared to the optimal fully

adjustable equalizer, even for filters with few taps.

2. System Description

Figure 1: Communication system with equalization.

Let us consider the communication system displayed in Fig. 1 representing an equal-

ized chip-to-chip interconnect. The input to the TX consists of a stream of i.i.d. equiprob-

able zero-mean data symbols a(k) belonging to a real-valued constellation, with E[a2(k)] =

σ2
a. First the TX applies the data symbols at the symbol rate 1/T to a continuous-time

tapped delay-line Hpr(f) that acts as PRF. The frequency response Hpr(f) is given by

Hpr(f) =
∑
l

hpr(l) exp(−j2πflTd), where hpr(l) is the lth PRF coefficient and Td de-

notes the tap spacing of the PRF, not necessarily equal to T . When T/Td is integer,

the continuous-time PRF is equivalent to a fractionally spaced discrete-time PRF. Next,

the output of the tapped delay-line is applied to the TX filter with frequency response

Htr(f). The resulting transmitted energy per symbol Es is given by

Es = σ2
ah

T
prRtrhpr (1)

where (.)T denotes transposition, (Rtr)m,n =
´
|Htr(f)|2ej2πf(mTd−nTd)df and (hpr)l =

hpr(l). When Htr(f) represents a unit-energy square-root Nyquist filter with respect to

the symbol rate 1/T and Td = T , we have (Rtr)m,n = δm−n, yielding Es = σ2
ah

T
prhpr.
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The channel is characterized by a frequency response Hch(f) and a zero-mean noise

term n(t) with power spectral density Sn(f), representing RX noise and interference.

The received signal r(t) is applied to the RX filter Hrec(f). The resulting signal is

sampled at the symbol rate 1/T . We denote by z(k) the sample taken at instant kT + τ ,

where the sampling delay τ compensates for the delay introduced by the cascade of the

PRF, the TX filter, the channel and the RX filter. The decision â(k) about the symbol

a(k) is the constellation point which is closest to u(k), with u(k) given by

u(k) = αz(k)−
∑
l>0

â(k − l)hfb(l) (2)

where α is a positive scaling factor, the second term in (2) represents a linear combination

of past symbol decisions {â(k− l), l > 0}, and hfb(l) is the lth coefficient of the FBF. We

stack the FBF coefficients into the vector hfb, with (hfb)l = hfb(l).

The sample z(k) at instant kT + τ can be represented as

z(k) =
∑
l,m

a(k −m)htot(mT − lTd + τ)hpr(l) + ν(k) (3)

where htot(t) =
´
Htr(f)Hch(f)Hrec(f)ej2πftdf is the impulse response of the cascade of

TX filter, the channel, and the RX filter. The quantity ν(k) represents the contribution

from the noise n(t), and is characterized by its autocorrelation function Rν(m) = E[ν(k+

m)ν(k)] =
´
Sn(f)|Hrec(f)|2ej2πfmTdf ; the noise variance is then given by σ2

ν = Rν(0).

In the case where Sn(f) = N0/2 (white noise) and Hrec(f) is a unit-energy square-root

Nyquist filter with respect to the symbol interval T , we obtain Rν(m) = (N0/2)δm.

Because of manufacturing tolerances, the channel frequency response Hch(f) should

be considered as a random process; the same holds for the channel impulse response hch(t)

and the corresponding total impulse response htot(t). Taking into account that the pairs

of (total impulse response, sampling delay) given by (htot(t), τ) and (htot(t− t0), τ + t0)

yield equivalent samples z(k), we will, without loss of generality, shift the time origin for
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each realization of htot(t) such that htot(t) is maximum at t = 0. This means that the

sample z(k) occurs kT + τ seconds later than the peak of the specific realization htot(t).

3. MMSE equalization

We restrict our attention to finite-length equalizers, i.e., hpr(l) = 0 for l /∈ [−Lpr,min,

Lpr,max] and hfb(l) = 0 for l /∈ [1, Lfb]. The equalizer coefficients are selected such that

the normalized MSE, given by MSEavg = E
[
(u(k) − a(k))2]/σ2

a, is minimized under the

restriction that the transmit energy per symbol equals a given value Es; the expectation

E[.] is with respect to the data symbols, the noise, and the realizations of the channel. The

best strategy is to adjust both the PRF and the FBF according to the specific channel

realization. A simpler but suboptimum strategy is to take fixed equalizers, irrespective

of the channel realization; in this case the equalizers are determined from the statistical

properties of Hch(f). In an intermediate strategy, the PRF is fixed while the FBF is

adjusted according to the realization of Hch(f). Note that for each strategy we also

have to determine the sampling delay τ which minimizes the MSE. In the minimization

process we assume that the decisions on the past data symbols are correct.

3.1. Strategy S1: adjustable (hpr,hfb, α)

All filter coefficients are adjusted according to the specific channel realization such

that the conditional MSE, given by MSEcond = E
[
(z(k)−a(k))2|Hch(f)]/σ2

a is minimized

with respect to (hpr,hfb, α). MSEcond for a given sampling delay τ can be expanded as

MSEcond =1− 2αhTtot,−hpr + α2hTprRhpr + α2µ

+

Lfb∑
l=1

(
α
∑
m

htot(l,m, τ)hpr(m)− hfb(l)
)2 (4)

where µ = σ2
ν/σ

2
a, (htot,−)l = htot(τ − lTd), (R)m,n =

∑
l/∈[1,Lfb]

htot(l,m, τ)htot(l, n, τ),

and htot(l,m, τ) = htot(lT −mTd + τ).
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In order to determine the optimal (hpr,hfb, α) we must minimize MSEcond from (4)

under the restriction (1). In the Appendix we show that the solution is obtained as

α2 =
σ2
a

Es
hTtot,−(R + µ′Rtr)

−1Rtr(R + µ′Rtr)
−1htot,− (5)

hpr =
1

α
(R + µ′Rtr)

−1htot,− (6)

hfb(l) = α
∑
m

htot(l,m, τ)hpr(m) l ∈ [1, Lfb] (7)

where µ′ = σ2
ν/Es. The corresponding minimum value of MSEcond is given by

MSEcond = 1− hTtot,−(R + µ′Rtr)
−1htot,− (8)

It should be noted that, for a given realization Hch(f), MSEcond from (8) still depends

on the sampling delay τ . Hence, we have to further minimize MSEcond over τ , for each

individual realization Hch(f), to obtain the overall minimum MSEcond.

3.2. Strategy S2: fixed (hpr,hfb, α)

Here we derive a fixed (hpr,hfb, α), irrespective of the channel realization, which

minimizes MSEavg = E
[
MSEcond

]
under the constraint (1), where the expectation E

[
.
]

is with respect to the channel realizations. In order to obtain manageable expressions,

this optimization will be carried out under the assumption that the optimum sampling

delay is the same for all channel realizations; although all channel impulse responses

achieve their maximum value at t = 0, in practice the optimum sampling delay slightly

depends on the shapes of the specific realizations. MSEavg for given τ is given by

MSEavg =1− 2αE
[
hTtot,−

]
hpr + α2hTprRavghpr + α2µ

+

Lfb∑
l=1

(
α
∑
m

E
[
htot(l,m, τ)

]
hpr(m)− hfb(l)

)2 (9)
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where (Ravg)m,n =
∑
l

E
[
htot(l,m, τ)htot(l, n, τ)

]
−
Lfb∑
l=1

E
[
htot(l,m, τ)

]
E
[
htot(l, n, τ)

]
.

Because of the similarity between (4) and (9), it follows that, for given τ , (5), (6)

and (7) still hold, provided that htot(t) and R are replaced by E[htot(t)] and Ravg,

respectively. The corresponding minimum value of MSEavg is given by

MSEavg = 1− E[hTtot,−](Ravg + µ′Rtr)
−1E[htot,−] (10)

The overall minimum MSE is obtained by minimizing MSEavg from (10) over the sam-

pling delay τ . Having found the optimum τ which minimizes (10), we compute the

corresponding (hpr,hfb, α), which will be used as the fixed equalizer.

Note that the above fixed equalizer (hpr,hfb, α) depends both on the first-order and

second-order moments of hch(t). Hence, this equalizer is different from the equalizer

which would result from the minimization of (4) with hch(t) simply replaced by E[hch(t)].

3.3. Strategy S3: fixed (hpr, α), adjustable hfb

An intermediate strategy is investigated where the PRF hpr and the scaling factor

α are fixed for all channel realizations, while the FBF hfb is adjusted according to the

specific channel realization. As in S2, the optimization is carried out under the simplifying

assumption that the optimum sampling delay τ is the same for all channel realizations.

For given hpr, α and τ , hfb minimizes MSEcond from (4), and is selected according to

(7). Averaging the resulting MSEcond over the channel realizations yields

MSEavg = 1− 2αE
[
hTtot,−

]
hpr + α2hTprRavghpr + α2µ (11)

where now (Ravg)m,n =
∑

l/∈[1,Lfb]

E
[
htot(l,m, τ)htot(l, n, τ)

]
.

The fixed coefficients (hpr, α) minimize (11) under the constraint (1). The optimum

hpr and α2 are again given by (6) and (5), but now with htot(t) and R are replaced by

E[htot(t)] and Ravg , respectively. The corresponding minimum value of MSEavg is given
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by (10), with updated Ravg. Next, this minimum MSEavg is further minimized over τ .

3.4. Complexity considerations

When an interconnect is produced in large quantities, only a (much smaller) represen-

tative subset of the realizations must be measured to obtain reliable ensemble statistics.

From these statistics, (hpr,hfb, α) for S2 (i.e., the fixed equalizer) can be computed and

set to the corresponding value, which is the same for all realizations.

For S1 and S3, (hpr,hfb, α) or hfb must be adjusted according to the specific realiza-

tion of the interconnect. When the adjustable part of the equalizer is to be determined

from a measurement of the interconnect, each realization must be measured. Clearly,

much more measurements are required than with S2.

Another approach with S1 and S3, is to implement an adaptive version of (part of)

the equalizer. In this implementation, an adaptation circuit automatically sets the value

of (hpr,hfb, α) or hfb during operation, depending on the specific channel. Knowledge

about the impulse response htot(t) can be acquired at the RX from applying known pilot

symbols to the TX filter Htr(f) during a training period. However, for S1 this knowledge

must be made available to the TX, in order that hpr can be set to the proper value;

this requires the presence of a return channel from the RX to the TX. Since no return

channel is needed for S3, where only hfb depends on the realization of the interconnect,

its complexity is much less than for S1. Moreover, the computation of hfb for S3 is

rather simple. Indeed, as (hpr, α) is fixed, applying known pilot symbols to the input of

the PRF allows the RX to directly estimate the sampled (at instants lT + τ) impulse

response related to the frequency response αHpr(f)Htr(f)Hch(f)Hrec(f); according to

(7), the FBF coefficients are equal to those samples at instants T + τ , ..., LfbT + τ .
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4. BER performance

The BER is obtained by following the derivation outlined in [17]. For a given Hch(f),

and assuming correct past decisions, the sample u(k) from (2) can be decomposed as

u(k) = g(0)a(k) + ISI(k) + nu(k) (12)

where nu(k) = αν(k) is the noise contribution, ISI(k) =
∑
l 6=0 a(k− l)g(l) represents the

ISI, and the pulse g(l) is given by

g(l) =


α
∑
m htot(l,m, τ)hpr(m)− hfb(l) l ∈ [1, Lfb]

α
∑
m htot(l,m, τ)hpr(m) l /∈ [1, Lfb]

(13)

Note that for S1 and S3 we have g(l) = 0 ∀l ∈ [1, Lfb] because of (7). We define Lg as

the number of nonzero coefficients g(l). For a Gaussian noise term n(t) and a 2-PAM

constellation C = {−1, 1}, the BER for a given channel realization is given by

BER = E
[
Q

(
g(0) + ISI(0)

σ

)]
(14)

with σ2 = α2σ2
ν ; Q(x) = 1−CDF(x) where CDF(x) denotes the cumulative distribution

function of a zero-mean Gaussian random variable with unit variance. The expectation

in (14) is with respect to the Lg − 1 data symbols ǎ0 contributing to ISI(0); hence,

this expectation involves 2Lg−1 terms, which becomes computationally prohibitive for

large Lg. This computational complexity is avoided by replacing BER from (14) by the

estimate BERest given by

BERest =
1

N

N∑
n=1

Q

(
g(0) + ISI(n)(0)

σ

)
(15)

where ISI(n)(0) involves the Lg − 1 data symbols ǎ
(n)
0 , and

(
ǎ
(1)
0 , ..., ǎ

(N)
0

)
denotes N

independent realizations of ǎ0. The expectation of BERest equals BER from (14), and
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the estimation error variance σ2
Q,est = E[(BERest − BER)2] is proportional to 1/N . For

large Lg, a value of N can be selected which achieves sufficient BER estimation accuracy

while still satisfying N � 2Lg−1, yielding a considerably smaller computation time than

for the exact evaluation of the expectation in (14).

5. Numerical Results

We illustrate the above equalization strategies and their MMSE and BER perfor-

mances, considering a chip-to-chip interconnect consisting of a 10-cm long on-board mi-

crostrip with a cross-section illustrated in Fig. 2. The nominal values of the geometrical

and material parameters are as follows:

1. Width of signal conductor: w = 100µm

2. Thickness of the signal conductor: tk = 35µm

3. Thickness of the dielectric substrate: h = 500µm

4. Conductivity of signal conductor (copper): σ = 58MS/m

5. Relative permittivity of dielectric substrate: εr = 4

6. Loss tangent of dielectric substrate: tan δ = 0.02

The interconnect is driven by a source with a 50 Ω impedance, and is terminated by

a 50 Ω load. The channel frequency response Hch(f) relates the voltage across the load

to the voltage at the microstrip input, i.e., after the source impedance.

𝑤 = 100 mm 

𝑡𝑘 = 35 mm 

ℎ = 500 mm 

Cu: 𝜎 = 58 MS/m 

Substrate: 𝜀𝑟 = 4, tan𝛿 = 0.02 

Figure 2: Cross section of microstrip.
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Because of manufacturing tolerances, the produced interconnects are not identical.

We consider the above parameters as independent Gaussian random variables, with a

mean equal to their nominal value and a standard deviation of 10% of the mean (which is

the order of magnitude for tolerances in consumer electronics). For the generation of the

corresponding channel realizations we make use of the approach outlined in [14–16], which

we briefly summarize. First, using polynomial chaos theory, the frequency-dependent

RLGC parameters of the microstrip are represented as truncated multivariate polyno-

mial expansions of the random parameters. Next, for each realization of the random

parameters, the corresponding RLGC parameters are computed using these polynomial

expansions. Finally, the corresponding realizations of the channel frequency response are

obtained from the RLGC parameters using standard transmission line relations.

We have generated two data sets, each containing 1000 realizations of Hch(f) with |f |

< 100 GHz. In the first set (6RV), all parameters are treated as random variables; in the

second set (3RV), only the width of the signal conductor w, the thickness of the dielectric

substrate h, and the relative permittivity of dielectric substrate εr are considered as

stochastic parameters. Comparing the two sets sets reveals that the higher variability of

6RV manifests itself mainly at frequencies above 20 GHz. Cascading each Hch(f) with

the TX and RX filters Htr(f) and Hrec(f), which are 5th-order Butterworth filters with

their 3 dB cutoff frequency at 1/(2T ), the corresponding realizations of htot(t) have been

obtained (and time-shifted so that the maximum of htot(t) occurs at t = 0). For 1/T =

20 Gbaud (6RV) and 80 Gbaud (6RV and 3RV), Fig. 3 shows the expectation E
[
htot(t)

]
together with E

[
htot(t)

]
±σ(t), where σ(t) denotes the standard deviation of htot(t). The

figure shows only the dominant contributions to htot(t), consisting of the direct pulse and

the first reflection, due to impedance mismatch; in between these contributions, htot(t)

is nearly zero. Additional reflections are present, but their magnitudes are considerably

lower than the first reflection. Note that the magnitude scales depend on the symbol

rate, and that the time scales for the direct pulse and for the first refection are different.

For 1/T = 20 Gbaud, the set 3RV is not included and will not be considered: because
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of the 10 GHz bandwidth of the TX and RX filters, the pulses htot(t) corresponding

to the 3RV and 6RV sets are nearly identical. There is not much variability between

the different realizations of htot(t) in the neighborhood of the direct pulse at t = 0. A

higher variability is observed near the reflections, because the propagation speed is not

constant over the different realizations. The differences between the responses for 20

Gbaud and 80 Gbaud come from the larger bandwidth of the TX and RX filter in the

latter case, causing more attenuation of the direct and reflected pulses corresponding to

80 Gbaud. Note that the variability of the reflected pulses and their magnitude relative

to the direct pulse are larger for 20 Gbaud than for 80 Gbaud; hence, the postcursor

ISI at the RX filter output (caused by the falling edge of the direct pulse and by the

dominant reflections of htot(t)) is relatively more important at 20 Gbaud; on the other

hand, the rising edge of the direct pulse is longer (when expressed in symbol intervals)

at 80 Gbaud than at 20 Gbaud, indicating that the precursor ISI is more important at

80 Gbaud. The difference between the two data sets with 1/T = 80 Gbaud consists of a

slightly smaller variance for 3RV around the direct and reflected pulse.

Figure 3: Plot of E[htot(t)] and E[htot(t)] ± σ(t), for 20 Gbaud (6RV) and 80 Gbaud (6RV and 3RV).

Although longer (adjustable) equalizers typically yield less residual ISI, one must take

into account that the proposed equalizers must be implementable in practice. We adopt
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the following approach to keep the number of filter taps within reasonable limits.

• As far as the PRF is concerned, when Td = T we opt for a 5-tap PRF, which is

of the order reported in literature for implemented equalizers [3, 5, 7, 12]. When

the PRF operates at twice the symbol rate (Td = T/2) then a 10-taps PRF is

considered, such that both PRFs have the same time span, which includes the

dominant samples of the direct pulse contained in htot(t).

• We initially calculate the coefficients of the above short PRF combined with a

long FBF, i.e. hfb(l) ∀l ∈ [1, ..., Lfb], where typically Lfb is chosen such that the

FBF has a total span of 4 ns, which includes all relevant postcursor ISI. However

this large amount of FBF taps involves a huge implementation complexity, so we

drastically reduce the number of FBF taps by means of the following approach.

As the dominant taps of the adjustable long FBF (S1 and S3) correspond to the

locations of the direct pulse and the first reflection and the remaining taps are very

small, we keep from the long FBF only those with the largest magnitude, and set

the remaining taps to zero. For 20 and 80 Gbaud we keep only 5 and 10 FBF taps

respectively. In S2, on the other hand, the fixed FBF is designed for coping with

the average pulse E
[
htot(t)

]
. When the actual pulse htot(t) differs substantially

from E
[
htot(t)

]
, the fixed FBF will in some cases actually increase (rather than

reduce) the postcursor ISI; this effect occurs especially for tap positions near the

reflections, where the largest variance is observed. This increase in postcursor ISI

is avoided by shortening the fixed FBF to a only few consecutive taps that deal

with the postcursor ISI caused by the direct pulse (where the variability is small);

we take 5 en 10 taps when operating at 20 Gbaud and 80 Gbaud, respectively. In

the discussion of the MMSE and BER performance we will always consider both

the long FBF and the FBF with the small number (5 or 10) of taps. The FBFs

with reduced number of taps will be referred to as “sparse”.
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It should be noted that the short PRF and sparse FBF resulting from the above

approach are not jointly optimum for the considered numbers of filter taps, because the

PRF taps have been derived under the assumption of a long FBF. Obtaining the optimum

filters with few taps would be prohibitive in terms of computation time, because for S1

and S3 the MMSE must be computed for all possible combinations of 5 FBF tap positions

out of 80 positions (20 Gbaud transmission) or 10 FBF tap positions out of 320 positions

(80 Gbaud transmission), after which the overall minimum MMSE must be selected.

5.1. MMSE performance

In this subsection we investigate the average minimum MSE for the equalization

strategies considered in section 3, which is obtained by first minimizing over the sampling

delay τ the conditional MSE for each individual channel realization, followed by averaging

the resulting minimum conditional MSE over the channel realizations. The conditional

MSE to be minimized over τ is given by (8) for S1, by (4) with (hpr,hfb, α) representing

the fixed equalizer for S2, and by (4) with the last term removed and (hpr, α) representing

the fixed part of the equalizer for S3. The average MMSE will be displayed as a function

of the signal-to-noise ratio (SNR), which we define as SNR = Es
´
|Hrec(f)|2df/σ2

ν (which

simplifies to SNR = 2Es/N0 when Sn(f) = N0/2).

Fig. 4a shows the MSE performance of the three equalization strategies when 1/T =

20 Gbaud. As expected, the adjustable equalizer (S1) yields the lowest MSE. When only

the FBF is adjustable (S3), the degradation compared to S1 is due to the fixed PRF,

which cannot adjust to the (small) variability of the direct pulse of htot(t). A considerable

MSE floor is observed when the entire equalizer is fixed (S2); this is attributed to the

fixed FBF which cannot adjust to the (rather large) variability of the reflections in htot(t).

Reducing the PRF tap spacing from T to T/2 slightly reduces the MSE for S2, whereas

for S1 and S3 the MSE is essentially the same as with tap spacing T . For all three

strategies, the MSE is increased when moving from the long FBF to the sparse FBF.

Fig. 4b shows the MSE performance at 80 Gbaud for the data set 6RV. The sparse
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Figure 4: MSEavg versus SNR

FBF has 10 taps, since 5 taps give rise to a large MSE floor. Comparing the cases of 20

Gbaud and 80 Gbaud, we see that for S1 and S3 the MSE at high SNR (e.g., 35 dB) is

larger for 80 Gbaud, whereas for S2 the MSE is larger for 20 Gbaud; this behavior for

S2 is explained by the smaller magnitude and variability of the reflected pulses in htot(t)

at 80 Gbaud, compared to 20 Gbaud. For the sparse FBF, Td = T/2 yields a smaller

MSE compared to Td = T in the case of S1, whereas the opposite is observed for S3; this

behavior for S3 is attributed to the fact that the fixed PRF yields more postcursor ISI,

which cannot be canceled by the sparse FBF.

Fig. 4c displays the MSE performance for 1/T = 80 Gbaud, but now for the data set

3RV. In S1 no noticeable difference in MSE performance is found compared to set 6RV.
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For S2 and S3 the degradation with respect to S1 is clearly much less for 3RV than for

6RV, which can be explained by the smaller variability in the data set 3RV.

-0.5 -0.25 0 0.25 0.5
τ

T

10
-3

10
-2

10
-1

10
0

MSE

Strategy 1

Strategy 2

Strategy 3

5 PRF taps, 320 FBF taps, Td = T

10 PRF taps, 320 FBF taps, Td = T/2

Figure 5: MSEavg versus τ for 1/T = 80 Gbaud (6RV), SNR = 30 dB.

For SNR = 30 dB and 80 Gbaud (6RV), Fig. 5 illustrates the sensitivity of the MSE

to the sampling delay τ . We display as a function of τ the averages (over the channel

realizations) of the conditional MSE for the considered strategies (i.e., the expressions

(8), (4), and (4) without its last term, which correspond to S1, S2 and S3, respectively),

where the fixed parameters in S2 and S3 correspond to the optimum sampling delay.

For S1 the adjustable PRF can to some extent compensate for a non-optimum sampling

delay. This compensation works better with the fractionally-spaced (Td = T/2) than

with the symbol-spaced (Td = T ) PRF: as its frequency response is periodic with period

1/Td, the adjustable PRF is able to introduce an arbitrary additional delay over the

entire useful signal frequency band |f | ≤ B (with B slightly exceeding 1/(2T ) due to

the TX and RX filter rolloff) only when Td ≤ 1/(2B), which condition is satisfied for

Td = T/2 but not for Td = T . For S2 and S3, the fixed PRF cannot compensate for

a non-optimum sampling delay, yielding an increased sensitivity compared to S1; using

Td = T/2 does not reduce the sensitivity compared to Td = T . The increased sensitivity

of S2 and S3 is not problematic when a proper timing algorithm is used (see section 5.2).
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5.2. BER performance

In this section we investigate the BER performance for 2-PAM transmission resulting

from the three equalization strategies. We display as a function of SNR the average (over

the set of channel realizations) of the BER corresponding to a given channel. The BER

has been estimated as outlined in section 4, with N = 107, which provides for all channel

realizations considered a sufficient accuracy of
σ2
Q,est

BER2 ≤ 10−3 down to BER=10−12.

Fig. 6a shows the BER performance as a function of SNR at 20 Gb/s, with channel

realizations from the set 6RV. Both a sparse (5 taps) and a long (80 taps) FBF are

considered. The PRF tap spacing equals T (5 taps PRF) or T/2 (10 taps PRF). The

following observations can be made.

• The best BER performance is obtained for the fully adjustable equalizer (S1). The

PRF tap spacings T and T/2 yield virtually the same BER. A BER of 10−12 is

achieved at SNR ≈ 23.7 dB for the long FBF, and at SNR ≈ 24.8 dB for the sparse

FBF (i.e., only 1.1 dB degradation for the latter).

• Because of the small variability of the direct pulse in htot(t), S3 yields nearly the

same BER as S1.

• Due to the high variability of the reflected pulses in htot(t), the fixed equalizer

(S2) yields a poor BER performance, showing a BER floor near BER = 10−4

(long PRF) and BER = 10−6 (sparse PRF). The better high-SNR performance

for the sparse FBF is attributed to the fact that (i) the fixed sparse FBF reduces

the postcursor ISI from the direct pulse, which has small variability, and leaves

the postcursor ISI from the reflections unaltered; (ii) the fixed long FBF cannot

adapt to the strong and highly variable reflections, thereby increasing (rather than

reducing) the peak ISI, compared to the sparse FBF. The BER is slightly smaller

for Td = T/2 compared to Td = T .
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16 18 20 22 24 26 28 30 32 34 36 38

SNR(dB)

10-12

10-10

10-8

10-6

10-4

10-2

BER

Strategy 1
Strategy 2
Strategy 3
5 PRF taps, 10 FBF taps, Td = T
10 PRF taps, 10 FBF taps, Td = T/2
5 PRF taps, 320 FBF taps, Td = T
10 PRF taps, 320 FBF taps, Td = T/2

(c) 80 Gb/s (3RV).

Figure 6: BER versus SNR for 2-PAM.

Fig. 6b shows the BER performance at 80 Gb/s (6RV), for both the long FBF (320

taps) and the sparse FBF (10 taps). The following observations can be made.

• In the case of the long FBF, S1 with Td = T/2 achieves a BER of 10−12 at SNR

≈ 27.8 dB, which is about 4 dB worse, compared to the 20 Gb/s bitrate; the BER

performance for Td = T is only marginally worse. Only a small degradation (≈ 0.2

dB) is noted when keeping the PRF fixed (S3), with again Td = T/2 performing

slightly better than Td = T .

• The BER performances of S1 and S3 are somewhat degraded when using the sparse

instead of the long FBF. Taking the BER for S1 with the long FBF and Td = T/2

as a reference, the degradation at a BER of 10−12 and Td = T/2 amount to about
19



1.5 dB for S1 and 3 dB for S3. The PRF spacing Td = T/2 performs about 0.5

dB better than Td = T for S1, whereas the opposite holds for S3; compared to the

adjustable PRF, the fixed PRF gives rise to more postcursor ISI, which cannot be

canceled by the sparse FBF.

• In contrast with the 20 Gb/s case, the BER for S2 does not show an error floor for

the 80 Gb/s bitrate; this is because at 80 Gbaud the reflections in htot(t) have a

lower magnitude and smaller variability. However, compared to S1 with long FBF,

we need to increase the SNR by at least 7.5 dB to achieve a BER of 10−12, making

this strategy less attractive to implement in practice.

Fig. 6c shows the BER curves at 80 Gb/s but now with data set 3RV. In general, a

similar behavior as for the 6RV data set is observed. Because of the smaller variability of

the 3RV data set, the SNR values needed to achieve a BER of 10−12 are lower than with

the 6RV data set; considering for each strategy the curve yielding the best performance,

these SNR values are reduced by about 0.6 dB, 1,0 dB and 0.8 dB for S1, S2 and S3,

respectively.

In Table 1 the SNR (in dB) needed to obtain a BER of 10−12 is listed for various

combinations of the number of filter taps, for 80 Gb/s and Td = T . First of all, the table

shows that increasing the number of PRF taps beyond 10 only yields a marginal change

in performance1 for S1 and S3. Next, we observe for S1 and S3 that the degradation

rapidly drops when the number of FBF taps increases, making it possible to achieve a

nearly optimal equalization with a limited amount of FBF taps. For S2 we observe as

explained before that the degradation increases with the number of taps in the FBF.

A similar dependence of the BER on the number of filter taps holds for 80 Gb/s with

Td = T/2, and for 20 Gb/s with Td = T and Td = T/2.

In practice, the optimal sampling delay which minimizes the MSE for a given channel

1as the PRF and FBF are not jointly optimum (the former has been computed assuming the latter
is very long), the performance does not necessarily improve with increasing PRF length
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Table 1: SNR (dB) at BER=10−12 for different number of filter taps for 80 Gb/s (6RV) and Td = T .

# PRF taps # FBF taps S1 S2 S3

5 10 29.7 36.7 30.3
5 20 28.4 36.7 28.8
5 40 27.9 36.7 28.3
5 320 27.9 37.4 28.1
15 10 29.8 35.2 30.4
15 320 27.8 38.4 28.0

Table 2: Degradation in SNR (dB) for τ = 0 compared to optimal sampling (BER = 10−12, Td = T )

# FBF taps S1 S2 S3

1/T = 20 Gb/s, 6RV, TD = T
5 0.7 - 0.7
80 0.1 - 0.1

1/T = 80 Gb/s, 6RV, TD = T
10 0.4 -0.3 0.2
320 0.2 0.2 0.1

1/T = 80 Gb/s, 3RV, TD = T
10 0.3 1.8 0.3
320 0.2 1.8 0.2

realization might be difficult to implement at the RX, in which case we have to resort to

a simpler approach. A possible solution is to take τ = 0, i.e., for each channel realization

the sampling instant kT + τ corresponds to the maximum of htot(t − kT ). This can

be achieved by a timing algorithm which estimates htot(t) (see section 3.4) and locates

the position of its maximum. In Table 2 the degradation in SNR at BER = 10−12 of

this more practical sampling compared to the optimal sampling is presented for Td = T ,

with the fixed equalizer parts (S2 and S3) optimized for τ = 0. The negative entry (-0.3

dB) in the table indicates that for the considered configuration the BER performance

for τ = 0 is actually better than for optimum sampling; we have verified that although

τ = 0 yields a larger MSE, the peak value of the ISI for this particular case is smaller

for τ = 0 than with optimum sampling. From Table 2 we conclude that the degradation

associated with sampling at τ = 0 does not exceed 1 dB for most configurations.

Finally, we relate the above SNR values which yield BER = 10−12 to representative

SNRs encountered in practice. For a transmit signal with a root mean-square (rms) value

of 0.5 V, RX noise characterized by a rms one-sided density of 10 nV/
√

Hz (average over

the Nyquist band (0, 1/(2T ))) and a RX filter approximated by an ideal lowpass filter
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with bandwidth 1/(2T ), the RX noise gives rise to SNR values of 54 dB and 48 dB for

bitrates of 20 Gb/s and 80 Gb/s, respectively. These SNR values are much larger than

those required to achieve a BER of 10−12 with S3 (with sparse FBF), which according

to Figs. 6a and 6b are about 25 dB (20 Gb/s bitrate) and 31 dB (80 Gb/s bitrate). The

latter SNR values are met in the presence of interference levels (in addition to the RX

noise) of about 28 mV rms (20 Gb/s bitrate) and 14 mV rms (80 Gb/s bitrate) within

the corresponding Nyquist band. The PCB should be designed in order not to exceed

these interference levels.

6. Conclusions

In this contribution we investigated the equalization for multi-Gb/s chip-to-chip in-

terconnects affected by manufacturing tolerances. We considered a MMSE equalization

scheme consisting of a PRF at the TX and a FBF operating on past decisions at the

RX. Three strategies were investigated: in S1 both the PRF and the FBF are adjustable

to the specific realization, S2 involves a fixed PRF and FBF based on the statistics of

the interconnect, and in S3 the PRF is fixed but the FBF is adjustable. For a 10 cm

microstrip with a 10% tolerance on its parameters, we have shown that S1 with a long

FBF achieves a BER of 10−12 for SNR ≈ 23.7 dB at 20 Gb/s and SNR ≈ 27.8 dB at

80 Gb/s. The implementation complexity is considerably reduced when using S3 with a

limited amount of FBF taps, at the expense of only a small BER degradation (about 1.1

dB at 20 Gb/s and 3 dB at 80 Gb/s). A considerably larger BER degradation occurs

with S2, which suffers from a BER floor at 20 Gb/s, and shows a 7.5 dB degradation

compared to S1 with long FBF at BER = 10−12 when operating at 80 Gb/s.

We have shown that for some configurations a 10 tap PRF with half-symbol spacing

brings a small BER performance advantage (< 0.5 dB) compared to a 5-tap symbol-

spaced PRF; however the cost of this advantage is a doubling of the implementation

complexity at the TX. For S1, using half-symbol spacing at the PRF makes the perfor-
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mance insensitive to a non-optimum sampling delay. For S2 and S3, the sensitivity to

a non-optimum sampling delay is not reduced when moving to half-symbol spacing, so

that taking the latter PRF spacing for these strategies is pointless.

7. Appendix

Obviously, for given α and hpr, MSEcond from (4) is minimized by selecting hfb

according to (7) which makes zero the last term in (4). The MSEcond is then given by

MSEcond = 1− 2αhTtot,−hpr + α2hTprRhpr + α2µ (16)

In order to take the constraint (1) into account, we consider the unconstrained minimiza-

tion of the Lagrangian MSEcond + λhTprRtrhpr over (hpr, α), where MSEcond is given by

(16) and λ is the Lagrange multiplier. Equating to zero the derivatives of the Lagrangian

with respect to hpr and α yields

−αhtot,− + α2Rhpr + λRtrhpr = 0 (17)

−hTtot,−hpr + αhTprRhpr + αµ = 0 (18)

Premultiplying (17) with hTpr, multiplying (18) with α and subtracting the resulting equa-

tions, we obtain α2µ = λEs/σ
2
a or equivalently, λ = α2µ′ with µ′ = σ2

ν/Es. Substituting

this value of λ into (17) and solving for hpr yields (6). The value of α results from the

constraint (1), yielding (5). The resulting minimal MSEcond is given by (8).
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