3,479 research outputs found

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Low power techniques for video compression

    Get PDF
    This paper gives an overview of low-power techniques proposed in the literature for mobile multimedia and Internet applications. Exploitable aspects are discussed in the behavior of different video compression tools. These power-efficient solutions are then classified by synthesis domain and level of abstraction. As this paper is meant to be a starting point for further research in the area, a lowpower hardware & software co-design methodology is outlined in the end as a possible scenario for video-codec-on-a-chip implementations on future mobile multimedia platforms

    An area-efficient 2-D convolution implementation on FPGA for space applications

    Get PDF
    The 2-D Convolution is an algorithm widely used in image and video processing. Although its computation is simple, its implementation requires a high computational power and an intensive use of memory. Field Programmable Gate Arrays (FPGA) architectures were proposed to accelerate calculations of 2-D Convolution and the use of buffers implemented on FPGAs are used to avoid direct memory access. In this paper we present an implementation of the 2-D Convolution algorithm on a FPGA architecture designed to support this operation in space applications. This proposed solution dramatically decreases the area needed keeping good performance, making it appropriate for embedded systems in critical space application

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft

    A Dynamically Reconfigurable Parallel Processing Framework with Application to High-Performance Video Processing

    Get PDF
    Digital video processing demands have and will continue to grow at unprecedented rates. Growth comes from ever increasing volume of data, demand for higher resolution, higher frame rates, and the need for high capacity communications. Moreover, economic realities force continued reductions in size, weight and power requirements. The ever-changing needs and complexities associated with effective video processing systems leads to the consideration of dynamically reconfigurable systems. The goal of this dissertation research was to develop and demonstrate the viability of integrated parallel processing system that effectively and efficiently apply pre-optimized hardware cores for processing video streamed data. Digital video is decomposed into packets which are then distributed over a group of parallel video processing cores. Real time processing requires an effective task scheduler that distributes video packets efficiently to any of the reconfigurable distributed processing nodes across the framework, with the nodes running on FPGA reconfigurable logic in an inherently Virtual\u27 mode. The developed framework, coupled with the use of hardware techniques for dynamic processing optimization achieves an optimal cost/power/performance realization for video processing applications. The system is evaluated by testing processor utilization relative to I/O bandwidth and algorithm latency using a separable 2-D FIR filtering system, and a dynamic pixel processor. For these applications, the system can achieve performance of hundreds of 640x480 video frames per second across an eight lane Gen I PCIe bus. Overall, optimal performance is achieved in the sense that video data is processed at the maximum possible rate that can be streamed through the processing cores. This performance, coupled with inherent ability to dynamically add new algorithms to the described dynamically reconfigurable distributed processing framework, creates new opportunities for realizable and economic hardware virtualization.\u2
    corecore