19 research outputs found

    Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains

    Get PDF
    In this paper, we consider comparison-based adaptive stochastic algorithms for solving numerical optimisation problems. We consider a specific subclass of algorithms that we call comparison-based step-size adaptive randomized search (CB-SARS), where the state variables at a given iteration are a vector of the search space and a positive parameter, the step-size, typically controlling the overall standard deviation of the underlying search distribution.We investigate the linear convergence of CB-SARS on\emph{scaling-invariant} objective functions. Scaling-invariantfunctions preserve the ordering of points with respect to their functionvalue when the points are scaled with the same positive parameter (thescaling is done w.r.t. a fixed reference point). This class offunctions includes norms composed with strictly increasing functions aswell as many non quasi-convex and non-continuousfunctions. On scaling-invariant functions, we show the existence of ahomogeneous Markov chain, as a consequence of natural invarianceproperties of CB-SARS (essentially scale-invariance and invariance tostrictly increasing transformation of the objective function). We thenderive sufficient conditions for \emph{global linear convergence} ofCB-SARS, expressed in terms of different stability conditions of thenormalised homogeneous Markov chain (irreducibility, positivity, Harrisrecurrence, geometric ergodicity) and thus define a general methodologyfor proving global linear convergence of CB-SARS algorithms onscaling-invariant functions. As a by-product we provide aconnexion between comparison-based adaptive stochasticalgorithms and Markov chain Monte Carlo algorithms.Comment: SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 201

    Variable Metric Random Pursuit

    Full text link
    We consider unconstrained randomized optimization of smooth convex objective functions in the gradient-free setting. We analyze Random Pursuit (RP) algorithms with fixed (F-RP) and variable metric (V-RP). The algorithms only use zeroth-order information about the objective function and compute an approximate solution by repeated optimization over randomly chosen one-dimensional subspaces. The distribution of search directions is dictated by the chosen metric. Variable Metric RP uses novel variants of a randomized zeroth-order Hessian approximation scheme recently introduced by Leventhal and Lewis (D. Leventhal and A. S. Lewis., Optimization 60(3), 329--245, 2011). We here present (i) a refined analysis of the expected single step progress of RP algorithms and their global convergence on (strictly) convex functions and (ii) novel convergence bounds for V-RP on strongly convex functions. We also quantify how well the employed metric needs to match the local geometry of the function in order for the RP algorithms to converge with the best possible rate. Our theoretical results are accompanied by numerical experiments, comparing V-RP with the derivative-free schemes CMA-ES, Implicit Filtering, Nelder-Mead, NEWUOA, Pattern-Search and Nesterov's gradient-free algorithms.Comment: 42 pages, 6 figures, 15 tables, submitted to journal, Version 3: majorly revised second part, i.e. Section 5 and Appendi
    corecore