408 research outputs found

    CLBlast: A Tuned OpenCL BLAS Library

    Full text link
    This work introduces CLBlast, an open-source BLAS library providing optimized OpenCL routines to accelerate dense linear algebra for a wide variety of devices. It is targeted at machine learning and HPC applications and thus provides a fast matrix-multiplication routine (GEMM) to accelerate the core of many applications (e.g. deep learning, iterative solvers, astrophysics, computational fluid dynamics, quantum chemistry). CLBlast has five main advantages over other OpenCL BLAS libraries: 1) it is optimized for and tested on a large variety of OpenCL devices including less commonly used devices such as embedded and low-power GPUs, 2) it can be explicitly tuned for specific problem-sizes on specific hardware platforms, 3) it can perform operations in half-precision floating-point FP16 saving bandwidth, time and energy, 4) it has an optional CUDA back-end, 5) and it can combine multiple operations in a single batched routine, accelerating smaller problems significantly. This paper describes the library and demonstrates the advantages of CLBlast experimentally for different use-cases on a wide variety of OpenCL hardware.Comment: Conference paper in: IWOCL '18, the International Workshop on OpenC

    NVIDIA Tensor Core Programmability, Performance & Precision

    Full text link
    The NVIDIA Volta GPU microarchitecture introduces a specialized unit, called "Tensor Core" that performs one matrix-multiply-and-accumulate on 4x4 matrices per clock cycle. The NVIDIA Tesla V100 accelerator, featuring the Volta microarchitecture, provides 640 Tensor Cores with a theoretical peak performance of 125 Tflops/s in mixed precision. In this paper, we investigate current approaches to program NVIDIA Tensor Cores, their performances and the precision loss due to computation in mixed precision. Currently, NVIDIA provides three different ways of programming matrix-multiply-and-accumulate on Tensor Cores: the CUDA Warp Matrix Multiply Accumulate (WMMA) API, CUTLASS, a templated library based on WMMA, and cuBLAS GEMM. After experimenting with different approaches, we found that NVIDIA Tensor Cores can deliver up to 83 Tflops/s in mixed precision on a Tesla V100 GPU, seven and three times the performance in single and half precision respectively. A WMMA implementation of batched GEMM reaches a performance of 4 Tflops/s. While precision loss due to matrix multiplication with half precision input might be critical in many HPC applications, it can be considerably reduced at the cost of increased computation. Our results indicate that HPC applications using matrix multiplications can strongly benefit from using of NVIDIA Tensor Cores.Comment: This paper has been accepted by the Eighth International Workshop on Accelerators and Hybrid Exascale Systems (AsHES) 201

    Algorithmic patterns for H\mathcal{H}-matrices on many-core processors

    Get PDF
    In this work, we consider the reformulation of hierarchical (H\mathcal{H}) matrix algorithms for many-core processors with a model implementation on graphics processing units (GPUs). H\mathcal{H} matrices approximate specific dense matrices, e.g., from discretized integral equations or kernel ridge regression, leading to log-linear time complexity in dense matrix-vector products. The parallelization of H\mathcal{H} matrix operations on many-core processors is difficult due to the complex nature of the underlying algorithms. While previous algorithmic advances for many-core hardware focused on accelerating existing H\mathcal{H} matrix CPU implementations by many-core processors, we here aim at totally relying on that processor type. As main contribution, we introduce the necessary parallel algorithmic patterns allowing to map the full H\mathcal{H} matrix construction and the fast matrix-vector product to many-core hardware. Here, crucial ingredients are space filling curves, parallel tree traversal and batching of linear algebra operations. The resulting model GPU implementation hmglib is the, to the best of the authors knowledge, first entirely GPU-based Open Source H\mathcal{H} matrix library of this kind. We conclude this work by an in-depth performance analysis and a comparative performance study against a standard H\mathcal{H} matrix library, highlighting profound speedups of our many-core parallel approach

    A scalable H-matrix approach for the solution of boundary integral equations on multi-GPU clusters

    Get PDF
    In this work, we consider the solution of boundary integral equations by means of a scalable hierarchical matrix approach on clusters equipped with graphics hardware, i.e. graphics processing units (GPUs). To this end, we extend our existing single-GPU hierarchical matrix library hmglib such that it is able to scale on many GPUs and such that it can be coupled to arbitrary application codes. Using a model GPU implementation of a boundary element method (BEM) solver, we are able to achieve more than 67 percent relative parallel speed-up going from 128 to 1024 GPUs for a model geometry test case with 1.5 million unknowns and a real-world geometry test case with almost 1.2 million unknowns. On 1024 GPUs of the cluster Titan, it takes less than 6 minutes to solve the 1.5 million unknowns problem, with 5.7 minutes for the setup phase and 20 seconds for the iterative solver. To the best of the authors' knowledge, we here discuss the first fully GPU-based distributed-memory parallel hierarchical matrix Open Source library using the traditional H-matrix format and adaptive cross approximation with an application to BEM problems

    Batched Linear Algebra Problems on GPU Accelerators

    Get PDF
    The emergence of multicore and heterogeneous architectures requires many linear algebra algorithms to be redesigned to take advantage of the accelerators, such as GPUs. A particularly challenging class of problems, arising in numerous applications, involves the use of linear algebra operations on many small-sized matrices. The size of these matrices is usually the same, up to a few hundred. The number of them can be thousands, even millions. Compared to large matrix problems with more data parallel computation that are well suited on GPUs, the challenges of small matrix problems lie in the low computing intensity, the large sequential operation fractions, and the big PCI-E overhead. These challenges entail redesigning the algorithms instead of merely porting the current LAPACK algorithms. We consider two classes of problems. The first is linear systems with one-sided factorizations (LU, QR, and Cholesky) and their solver, forward and backward substitution. The second is a two-sided Householder bi-diagonalization. They are challenging to develop and are highly demanded in applications. Our main efforts focus on the same-sized problems. Variable-sized problems are also considered, though to a lesser extent. Our contributions can be summarized as follows. First, we formulated a batched linear algebra framework to solve many data-parallel, small-sized problems/tasks. Second, we redesigned a set of fundamental linear algebra algorithms for high- performance, batched execution on GPU accelerators. Third, we designed batched BLAS (Basic Linear Algebra Subprograms) and proposed innovative optimization techniques for high-performance computation. Fourth, we illustrated the batched methodology on real-world applications as in the case of scaling a CFD application up to 4096 nodes on the Titan supercomputer at Oak Ridge National Laboratory (ORNL). Finally, we demonstrated the power, energy and time efficiency of using accelerators as compared to CPUs. Our solutions achieved large speedups and high energy efficiency compared to related routines in CUBLAS on NVIDIA GPUs and MKL on Intel Sandy-Bridge multicore CPUs. The modern accelerators are all Single-Instruction Multiple-Thread (SIMT) architectures. Our solutions and methods are based on NVIDIA GPUs and can be extended to other accelerators, such as the Intel Xeon Phi and AMD GPUs based on OpenCL
    • …
    corecore