4,104 research outputs found

    Unsplittable Load Balancing in a Network of Charging Stations Under QoS Guarantees

    Get PDF
    The operation of the power grid is becoming more stressed, due to the addition of new large loads represented by Electric Vehicles (EVs) and a more intermittent supply due to the incorporation of renewable sources. As a consequence, the coordination and control of projected EV demand in a network of fast charging stations becomes a critical and challenging problem. In this paper, we introduce a game theoretic based decentralized control mechanism to alleviate negative impacts from the EV demand. The proposed mechanism takes into consideration the non-uniform spatial distribution of EVs that induces uneven power demand at each charging facility, and aims to: (i) avoid straining grid resources by offering price incentives so that customers accept being routed to less busy stations, (ii) maximize total revenue by serving more customers with the same amount of grid resources, and (iii) provide charging service to customers with a certain level of Quality-of-Service (QoS), the latter defined as the long term customer blocking probability. We examine three scenarios of increased complexity that gradually approximate real world settings. The obtained results show that the proposed framework leads to substantial performance improvements in terms of the aforementioned goals, when compared to current state of affairs.Comment: Accepted for Publication in IEEE Transactions on Smart Gri

    A Practical Approach for Coordination of Plugged- In Electric Vehicles To Improve Performance and Power Quality of Smart Grid

    Get PDF
    This PhD research is undertaken by supplications including 14 peer-reviewed published articles over seven years research at Curtin University. This study focuses on a real-time Plugged-in Electric Vehicle charging coordination with the inclusion of Electric Vehicle battery charger harmonics in Smart Grid and future Microgrids with incorporation of Renewable Energy Resources. This strategy addresses utilities concerns of grid power quality and performance with the application of SSCs dispatching, active power filters or wavelet energy

    Optimization of Bi-Directional V2G Behavior With Active Battery Anti-Aging Scheduling

    Get PDF

    Research on economic planning and operation of electric vehicle charging stations

    Get PDF
    Appropriately planning and scheduling strategies can improve the enthusiasm of Electric vehicles (EVs), reduce charging losses, and support the power grid system. Thus, this dissertation studies the planning and operating of the EV charging station. First, an EV charging station planning strategy considering the overall social cost is proposed. Then, to reduce the charging cost and guarantee the charging demand, an optimal charging scheduling method is proposed. Additionally, by considering the uncertainty of charging demand, a data-driven intelligent EV charging scheduling algorithm is proposed. Finally, a collaborative optimal routing and scheduling method is proposed

    An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †

    Get PDF
    The design and implementation of management policies for plug-in electric vehicles (PEVs) need to be supported by a holistic understanding of the functional processes, their complex interactions, and their response to various changes. Models developed to represent different functional processes and systems are seen as useful tools to support the related studies for different stakeholders in a tangible way. This paper presents an overview of modeling approaches applied to support aggregation-based management and integration of PEVs from the perspective of fleet operators and grid operators, respectively. We start by explaining a structured modeling approach, i.e., a flexible combination of process models and system models, applied to different management and integration studies. A state-of-the-art overview of modeling approaches applied to represent several key processes, such as charging management, and key systems, such as the PEV fleet, is then presented, along with a detailed description of different approaches. Finally, we discuss several considerations that need to be well understood during the modeling process in order to assist modelers and model users in the appropriate decisions of using existing, or developing their own, solutions for further applications
    • …
    corecore