85,899 research outputs found

    Gunrock: A High-Performance Graph Processing Library on the GPU

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs have been two significant challenges for developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We evaluate Gunrock on five key graph primitives and show that Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives, and better performance than any other GPU high-level graph library.Comment: 14 pages, accepted by PPoPP'16 (removed the text repetition in the previous version v5

    Gunrock: GPU Graph Analytics

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs, have presented two significant challenges to developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We characterize the performance of various optimization strategies and evaluate Gunrock's overall performance on different GPU architectures on a wide range of graph primitives that span from traversal-based algorithms and ranking algorithms, to triangle counting and bipartite-graph-based algorithms. The results show that on a single GPU, Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives and CPU shared-memory graph libraries such as Ligra and Galois, and better performance than any other GPU high-level graph library.Comment: 52 pages, invited paper to ACM Transactions on Parallel Computing (TOPC), an extended version of PPoPP'16 paper "Gunrock: A High-Performance Graph Processing Library on the GPU

    OSCP: Optimization Service Connectivity Protocol

    Get PDF
    Optimization software e.g. solvers and modelling systems, expose software and vendor specific interfacing mechanisms to client applications e.g. decision support systems, thus introducing close coupling. The ‘Optimization Service Connectivity Protocol’ (OSCP) is an abstraction of the interfaces to optimization software, which is aimed primarily at simplifying the process of integrating optimization systems into software solutions by providing an abstracted, uniform and easy to use interface to such systems, regardless of system or vendor specific requirements. This paper presents a high-level overview of OSCP including descriptions of its main interfaces, and illustrates its use via examples

    Temporal Vectorization: A Compiler Approach to Automatic Multi-Pumping

    Full text link
    The multi-pumping resource sharing technique can overcome the limitations commonly found in single-clocked FPGA designs by allowing hardware components to operate at a higher clock frequency than the surrounding system. However, this optimization cannot be expressed in high levels of abstraction, such as HLS, requiring the use of hand-optimized RTL. In this paper we show how to leverage multiple clock domains for computational subdomains on reconfigurable devices through data movement analysis on high-level programs. We offer a novel view on multi-pumping as a compiler optimization - a superclass of traditional vectorization. As multiple data elements are fed and consumed, the computations are packed temporally rather than spatially. The optimization is applied automatically using an intermediate representation that maps high-level code to HLS. Internally, the optimization injects modules into the generated designs, incorporating RTL for fine-grained control over the clock domains. We obtain a reduction of resource consumption by up to 50% on critical components and 23% on average. For scalable designs, this can enable further parallelism, increasing overall performance

    Block level voltage

    Get PDF
    Over the past years, state-of-art power optimization methods move towards higher abstraction levels that result in more efficient power savings. Among existing power optimization approaches, dynamic power management (DPM) is considered to be one of the most effective strategies. Depending on abstraction levels, DPM can be implemented in different formats but here we focus on scheduling that is more suitable for real-time system design use. This differs from the concurrent scheduling approaches that start from either the HLS (High-Level Synthesis) or RTS (Real-Time System) point of view, we propose a synergy solution of both approaches, namely block-level voltage/frequency scheduling (BLVFS). The presented block-level voltage/ frequency scheduling approach shows a generic solution for low power SoC (System on Chip) system design while the approaches which belong to the HLS and RTS categories have a strong dependency on the system functionalities. Consider a SoC as a combination of heterogeneous functional blocks, our approach provides efficient power savings by dynamically scheduling the scaling of voltage and frequency at the same time. Simulation results indicate that by using heuristic based strategies significant power savings can be achieved

    Building Efficient Query Engines in a High-Level Language

    Get PDF
    Abstraction without regret refers to the vision of using high-level programming languages for systems development without experiencing a negative impact on performance. A database system designed according to this vision offers both increased productivity and high performance, instead of sacrificing the former for the latter as is the case with existing, monolithic implementations that are hard to maintain and extend. In this article, we realize this vision in the domain of analytical query processing. We present LegoBase, a query engine written in the high-level language Scala. The key technique to regain efficiency is to apply generative programming: LegoBase performs source-to-source compilation and optimizes the entire query engine by converting the high-level Scala code to specialized, low-level C code. We show how generative programming allows to easily implement a wide spectrum of optimizations, such as introducing data partitioning or switching from a row to a column data layout, which are difficult to achieve with existing low-level query compilers that handle only queries. We demonstrate that sufficiently powerful abstractions are essential for dealing with the complexity of the optimization effort, shielding developers from compiler internals and decoupling individual optimizations from each other. We evaluate our approach with the TPC-H benchmark and show that: (a) With all optimizations enabled, LegoBase significantly outperforms a commercial database and an existing query compiler. (b) Programmers need to provide just a few hundred lines of high-level code for implementing the optimizations, instead of complicated low-level code that is required by existing query compilation approaches. (c) The compilation overhead is low compared to the overall execution time, thus making our approach usable in practice for compiling query engines
    corecore