2,384 research outputs found

    Optimization of Access Threshold for Cognitive Radio Networks with Prioritized Secondary Users

    Get PDF
    We propose an access control scheme in cognitive radio networks with prioritized Secondary Users (SUs). Considering the different types of data in the networks, the SU packets in the system are divided into SU1 packets with higher priority and SU2 packets with lower priority. In order to control the access of the SU2 packets (including the new arrival SU2 packets and the interrupted SU2 packets), a dynamic access threshold is set. By building a discrete-time queueing model and constructing a three-dimensional Markov chain with the number of the three types of packets in the system, we derive some performance measures of the two types of the SU packets. Then, with numerical results, we show the change trends for the different performance measures. At last, considering the tradeoff between the throughput and the average delay of the SU2 packets, we build a net benefit function to make optimization for the access threshold

    Cognitive and Energy Harvesting-Based D2D Communication in Cellular Networks: Stochastic Geometry Modeling and Analysis

    Full text link
    While cognitive radio enables spectrum-efficient wireless communication, radio frequency (RF) energy harvesting from ambient interference is an enabler for energy-efficient wireless communication. In this paper, we model and analyze cognitive and energy harvesting-based D2D communication in cellular networks. The cognitive D2D transmitters harvest energy from ambient interference and use one of the channels allocated to cellular users (in uplink or downlink), which is referred to as the D2D channel, to communicate with the corresponding receivers. We investigate two spectrum access policies for cellular communication in the uplink or downlink, namely, random spectrum access (RSA) policy and prioritized spectrum access (PSA) policy. In RSA, any of the available channels including the channel used by the D2D transmitters can be selected randomly for cellular communication, while in PSA the D2D channel is used only when all of the other channels are occupied. A D2D transmitter can communicate successfully with its receiver only when it harvests enough energy to perform channel inversion toward the receiver, the D2D channel is free, and the SINR\mathsf{SINR} at the receiver is above the required threshold; otherwise, an outage occurs for the D2D communication. We use tools from stochastic geometry to evaluate the performance of the proposed communication system model with general path-loss exponent in terms of outage probability for D2D and cellular users. We show that energy harvesting can be a reliable alternative to power cognitive D2D transmitters while achieving acceptable performance. Under the same SINR\mathsf{SINR} outage requirements as for the non-cognitive case, cognitive channel access improves the outage probability for D2D users for both the spectrum access policies.Comment: IEEE Transactions on Communications, to appea

    Distributed Channel Assignment in Cognitive Radio Networks: Stable Matching and Walrasian Equilibrium

    Full text link
    We consider a set of secondary transmitter-receiver pairs in a cognitive radio setting. Based on channel sensing and access performances, we consider the problem of assigning channels orthogonally to secondary users through distributed coordination and cooperation algorithms. Two economic models are applied for this purpose: matching markets and competitive markets. In the matching market model, secondary users and channels build two agent sets. We implement a stable matching algorithm in which each secondary user, based on his achievable rate, proposes to the coordinator to be matched with desirable channels. The coordinator accepts or rejects the proposals based on the channel preferences which depend on interference from the secondary user. The coordination algorithm is of low complexity and can adapt to network dynamics. In the competitive market model, channels are associated with prices and secondary users are endowed with monetary budget. Each secondary user, based on his utility function and current channel prices, demands a set of channels. A Walrasian equilibrium maximizes the sum utility and equates the channel demand to their supply. We prove the existence of Walrasian equilibrium and propose a cooperative mechanism to reach it. The performance and complexity of the proposed solutions are illustrated by numerical simulations.Comment: submitted to IEEE Transactions on Wireless Communicaitons, 13 pages, 10 figures, 4 table

    An Auction-based Mechanism for Cooperative Sensing in Cognitive Networks

    Get PDF
    International audienceIn this paper, we propose an auction-based cooperative sensing protocol for secondary users in cognitive networks. The proposed auction mechanism is based on a novel modified Vickrey auction with a three dimensional bid, that accounts for detection gains as well as for virtual currency gains. We present a formal proof to show that the proposed three dimensional bidding mechanism preserves the truthfulness property of the classic Vickrey auction. The cooperative auction is combined with a prioritized access scheme to increase the efficiency and to reduce the response time for the coalition formation procedure. Our auction-based cooperative sensing mechanism can be easily applied to different network scenarios, by defining specific utility functions. The proposed cooperative sensing auctioning mechanism is illustrated for both downlink and uplink. Our simulation results show that users' cooperation is incentivized by the proposed algorithm, which leads to significant detection gains for the downlink and the uplink scenarios, with a more efficient energy expenditure
    • …
    corecore