16,368 research outputs found

    Optimising rule-based classification in temporal data

    Get PDF
    This study optimises manually derived rule-based expert system classification of objects according to changes in their properties over time. One of the key challenges that this study tries to address is how to classify objects that exhibit changes in their behaviour over time, for example how to classify companies’ share price stability over a period of time or how to classify students’ preferences for subjects while they are progressing through school. A specific case the paper considers is the strategy of players in public goods games (as common in economics) across multiple consecutive games. Initial classification starts from expert definitions specifying class allocation for players based on aggregated attributes of the temporal data. Based on these initial classifications, the optimisation process tries to find an improved classifier which produces the best possible compact classes of objects (players) for every time point in the temporal data. The compactness of the classes is measured by a cost function based on internal cluster indices like the Dunn Index, distance measures like Euclidean distance or statistically derived measures like standard deviation. The paper discusses the approach in the context of incorporating changing player strategies in the aforementioned public good games, where common classification approaches so far do not consider such changes in behaviour resulting from learning or in-game experience. By using the proposed process for classifying temporal data and the actual players’ contribution during the games, we aim to produce a more refined classification which in turn may inform the interpretation of public goods game data

    Program transformations using temporal logic side conditions

    Get PDF
    This paper describes an approach to program optimisation based on transformations, where temporal logic is used to specify side conditions, and strategies are created which expand the repertoire of transformations and provide a suitable level of abstraction. We demonstrate the power of this approach by developing a set of optimisations using our transformation language and showing how the transformations can be converted into a form which makes it easier to apply them, while maintaining trust in the resulting optimising steps. The approach is illustrated through a transformational case study where we apply several optimisations to a small program

    Training and Scaling Preference Functions for Disambiguation

    Get PDF
    We present an automatic method for weighting the contributions of preference functions used in disambiguation. Initial scaling factors are derived as the solution to a least-squares minimization problem, and improvements are then made by hill-climbing. The method is applied to disambiguating sentences in the ATIS (Air Travel Information System) corpus, and the performance of the resulting scaling factors is compared with hand-tuned factors. We then focus on one class of preference function, those based on semantic lexical collocations. Experimental results are presented showing that such functions vary considerably in selecting correct analyses. In particular we define a function that performs significantly better than ones based on mutual information and likelihood ratios of lexical associations.Comment: To appear in Computational Linguistics (probably volume 20, December 94). LaTeX, 21 page

    Pemilihan kerjaya di kalangan pelajar aliran perdagangan sekolah menengah teknik : satu kajian kes

    Get PDF
    This research is a survey to determine the career chosen of form four student in commerce streams. The important aspect of the career chosen has been divided into three, first is information about career, type of career and factor that most influence students in choosing a career. The study was conducted at Sekolah Menengah Teknik Kajang, Selangor Darul Ehsan. Thirty six form four students was chosen by using non-random sampling purpose method as respondent. All information was gather by using questionnaire. Data collected has been analyzed in form of frequency, percentage and mean. Results are performed in table and graph. The finding show that information about career have been improved in students career chosen and mass media is the main factor influencing students in choosing their career

    Deep learning cardiac motion analysis for human survival prediction

    Get PDF
    Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p < .0001) for our model C=0.73 (95%\% CI: 0.68 - 0.78) than the human benchmark of C=0.59 (95%\% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS
    corecore