5,881 research outputs found

    Inverse Reinforcement Learning in Large State Spaces via Function Approximation

    Get PDF
    This paper introduces a new method for inverse reinforcement learning in large-scale and high-dimensional state spaces. To avoid solving the computationally expensive reinforcement learning problems in reward learning, we propose a function approximation method to ensure that the Bellman Optimality Equation always holds, and then estimate a function to maximize the likelihood of the observed motion. The time complexity of the proposed method is linearly proportional to the cardinality of the action set, thus it can handle large state spaces efficiently. We test the proposed method in a simulated environment, and show that it is more accurate than existing methods and significantly better in scalability. We also show that the proposed method can extend many existing methods to high-dimensional state spaces. We then apply the method to evaluating the effect of rehabilitative stimulations on patients with spinal cord injuries based on the observed patient motions.Comment: Experiment update

    Policy Search: Any Local Optimum Enjoys a Global Performance Guarantee

    Get PDF
    Local Policy Search is a popular reinforcement learning approach for handling large state spaces. Formally, it searches locally in a paramet erized policy space in order to maximize the associated value function averaged over some predefined distribution. It is probably commonly b elieved that the best one can hope in general from such an approach is to get a local optimum of this criterion. In this article, we show th e following surprising result: \emph{any} (approximate) \emph{local optimum} enjoys a \emph{global performance guarantee}. We compare this g uarantee with the one that is satisfied by Direct Policy Iteration, an approximate dynamic programming algorithm that does some form of Poli cy Search: if the approximation error of Local Policy Search may generally be bigger (because local search requires to consider a space of s tochastic policies), we argue that the concentrability coefficient that appears in the performance bound is much nicer. Finally, we discuss several practical and theoretical consequences of our analysis

    Reinforcement Learning: A Survey

    Full text link
    This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word ``reinforcement.'' The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.Comment: See http://www.jair.org/ for any accompanying file

    Risk Aversion in Finite Markov Decision Processes Using Total Cost Criteria and Average Value at Risk

    Full text link
    In this paper we present an algorithm to compute risk averse policies in Markov Decision Processes (MDP) when the total cost criterion is used together with the average value at risk (AVaR) metric. Risk averse policies are needed when large deviations from the expected behavior may have detrimental effects, and conventional MDP algorithms usually ignore this aspect. We provide conditions for the structure of the underlying MDP ensuring that approximations for the exact problem can be derived and solved efficiently. Our findings are novel inasmuch as average value at risk has not previously been considered in association with the total cost criterion. Our method is demonstrated in a rapid deployment scenario, whereby a robot is tasked with the objective of reaching a target location within a temporal deadline where increased speed is associated with increased probability of failure. We demonstrate that the proposed algorithm not only produces a risk averse policy reducing the probability of exceeding the expected temporal deadline, but also provides the statistical distribution of costs, thus offering a valuable analysis tool
    corecore