5,388 research outputs found

    Robust Reduced-Rank Adaptive Processing Based on Parallel Subgradient Projection and Krylov Subspace Techniques

    Full text link
    In this paper, we propose a novel reduced-rank adaptive filtering algorithm by blending the idea of the Krylov subspace methods with the set-theoretic adaptive filtering framework. Unlike the existing Krylov-subspace-based reduced-rank methods, the proposed algorithm tracks the optimal point in the sense of minimizing the \sinq{true} mean square error (MSE) in the Krylov subspace, even when the estimated statistics become erroneous (e.g., due to sudden changes of environments). Therefore, compared with those existing methods, the proposed algorithm is more suited to adaptive filtering applications. The algorithm is analyzed based on a modified version of the adaptive projected subgradient method (APSM). Numerical examples demonstrate that the proposed algorithm enjoys better tracking performance than the existing methods for the interference suppression problem in code-division multiple-access (CDMA) systems as well as for simple system identification problems.Comment: 10 figures. In IEEE Transactions on Signal Processing, 201

    A unified framework for solving a general class of conditional and robust set-membership estimation problems

    Full text link
    In this paper we present a unified framework for solving a general class of problems arising in the context of set-membership estimation/identification theory. More precisely, the paper aims at providing an original approach for the computation of optimal conditional and robust projection estimates in a nonlinear estimation setting where the operator relating the data and the parameter to be estimated is assumed to be a generic multivariate polynomial function and the uncertainties affecting the data are assumed to belong to semialgebraic sets. By noticing that the computation of both the conditional and the robust projection optimal estimators requires the solution to min-max optimization problems that share the same structure, we propose a unified two-stage approach based on semidefinite-relaxation techniques for solving such estimation problems. The key idea of the proposed procedure is to recognize that the optimal functional of the inner optimization problems can be approximated to any desired precision by a multivariate polynomial function by suitably exploiting recently proposed results in the field of parametric optimization. Two simulation examples are reported to show the effectiveness of the proposed approach.Comment: Accpeted for publication in the IEEE Transactions on Automatic Control (2014

    Optimal Fuzzy Model Construction with Statistical Information using Genetic Algorithm

    Full text link
    Fuzzy rule based models have a capability to approximate any continuous function to any degree of accuracy on a compact domain. The majority of FLC design process relies on heuristic knowledge of experience operators. In order to make the design process automatic we present a genetic approach to learn fuzzy rules as well as membership function parameters. Moreover, several statistical information criteria such as the Akaike information criterion (AIC), the Bhansali-Downham information criterion (BDIC), and the Schwarz-Rissanen information criterion (SRIC) are used to construct optimal fuzzy models by reducing fuzzy rules. A genetic scheme is used to design Takagi-Sugeno-Kang (TSK) model for identification of the antecedent rule parameters and the identification of the consequent parameters. Computer simulations are presented confirming the performance of the constructed fuzzy logic controller

    Energy performance forecasting of residential buildings using fuzzy approaches

    Get PDF
    The energy consumption used for domestic purposes in Europe is, to a considerable extent, due to heating and cooling. This energy is produced mostly by burning fossil fuels, which has a high negative environmental impact. The characteristics of a building are an important factor to determine the necessities of heating and cooling loads. Therefore, the study of the relevant characteristics of the buildings, regarding the heating and cooling needed to maintain comfortable indoor air conditions, could be very useful in order to design and construct energy-efficient buildings. In previous studies, different machine-learning approaches have been used to predict heating and cooling loads from the set of variables: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area and glazing area distribution. However, none of these methods are based on fuzzy logic. In this research, we study two fuzzy logic approaches, i.e., fuzzy inductive reasoning (FIR) and adaptive neuro fuzzy inference system (ANFIS), to deal with the same problem. Fuzzy approaches obtain very good results, outperforming all the methods described in previous studies except one. In this work, we also study the feature selection process of FIR methodology as a pre-processing tool to select the more relevant variables before the use of any predictive modelling methodology. It is proven that FIR feature selection provides interesting insights into the main building variables causally related to heating and cooling loads. This allows better decision making and design strategies, since accurate cooling and heating load estimations and correct identification of parameters that affect building energy demands are of high importance to optimize building designs and equipment specifications.Peer ReviewedPostprint (published version

    Convex Combinatorial Optimization

    Full text link
    We introduce the convex combinatorial optimization problem, a far reaching generalization of the standard linear combinatorial optimization problem. We show that it is strongly polynomial time solvable over any edge-guaranteed family, and discuss several applications

    On Some Integrated Approaches to Inference

    Full text link
    We present arguments for the formulation of unified approach to different standard continuous inference methods from partial information. It is claimed that an explicit partition of information into a priori (prior knowledge) and a posteriori information (data) is an important way of standardizing inference approaches so that they can be compared on a normative scale, and so that notions of optimal algorithms become farther-reaching. The inference methods considered include neural network approaches, information-based complexity, and Monte Carlo, spline, and regularization methods. The model is an extension of currently used continuous complexity models, with a class of algorithms in the form of optimization methods, in which an optimization functional (involving the data) is minimized. This extends the family of current approaches in continuous complexity theory, which include the use of interpolatory algorithms in worst and average case settings
    corecore