4 research outputs found

    False discovery rates in somatic mutation studies of cancer

    Full text link
    The purpose of cancer genome sequencing studies is to determine the nature and types of alterations present in a typical cancer and to discover genes mutated at high frequencies. In this article we discuss statistical methods for the analysis of somatic mutation frequency data generated in these studies. We place special emphasis on a two-stage study design introduced by Sj\"{o}blom et al. [Science 314 (2006) 268--274]. In this context, we describe and compare statistical methods for constructing scores that can be used to prioritize candidate genes for further investigation and to assess the statistical significance of the candidates thus identified. Controversy has surrounded the reliability of the false discovery rates estimates provided by the approximations used in early cancer genome studies. To address these, we develop a semiparametric Bayesian model that provides an accurate fit to the data. We use this model to generate a large collection of realistic scenarios, and evaluate alternative approaches on this collection. Our assessment is impartial in that the model used for generating data is not used by any of the approaches compared. And is objective, in that the scenarios are generated by a model that fits data. Our results quantify the conservative control of the false discovery rate with the Benjamini and Hockberg method compared to the empirical Bayes approach and the multiple testing method proposed in Storey [J. R. Stat. Soc. Ser. B Stat. Methodol. 64 (2002) 479--498]. Simulation results also show a negligible departure from the target false discovery rate for the methodology used in Sj\"{o}blom et al. [Science 314 (2006) 268--274].Comment: Published in at http://dx.doi.org/10.1214/10-AOAS438 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese: The Singapore Chinese health study

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified genetic factors in type 2 diabetes (T2D), mostly among individuals of European ancestry. We tested whether previously identified T2D-associated single nucleotide polymorphisms (SNPs) replicate and whether SNPs in regions near known T2D SNPs were associated with T2D within the Singapore Chinese Health Study. Methods: 2338 cases and 2339 T2D controls from the Singapore Chinese Health Study were genotyped for 507,509 SNPs. Imputation extended the genotyped SNPs to 7,514,461 with high estimated certainty (r2>0.8). Replication of known index SNP associations in T2D was attempted. Risk scores were computed as the sum of index risk alleles. SNPs in regions ±100 kb around each index were tested for associations with T2D in conditional fine-mapping analysis. Results: Of 69 index SNPs, 20 were genotyped directly and genotypes at 35 others were well imputed. Among the 55 SNPs with data, disease associations were replicated (at p<0.05) for 15 SNPs, while 32 more were directionally consistent with previous reports. Risk score was a significant predictor with a 2.03 fold higher risk CI (1.69-2.44) of T2D comparing the highest to lowest quintile of risk allele burden (p = 5.72×10-14). Two improved SNPs around index rs10923931 and 5 new candidate SNPs around indices rs10965250 and rs1111875 passed simple Bonferroni corrections for significance in conditional analysis. Nonetheless, only a small fraction (2.3% on the disease liability scale) of T2D burden in Singapore is explained by these SNPs. Conclusions: While diabetes risk in Singapore Chinese involves genetic variants, most disease risk remains unexplained. Further genetic work is ongoing in the Singapore Chinese population to identify unique common variants not already seen in earlier studies. However rapid increases in T2D risk have occurred in recent decades in this population, indicating that dynamic environmental influences and possibly gene by environment interactions complicate the genetic architecture of this disease. © 2014 Chen et al
    corecore