25 research outputs found

    Precoder design for space-time coded systems over correlated Rayleigh fading channels using convex optimization

    Get PDF
    A class of computationally efficient linear precoders for space-time block coded multiple-input multiple-output wireless systems is derived based on the minimization of the exact symbol error rate (SER) and its upper bound. Both correlations at the transmitter and receiver are assumed to be present, and only statistical channel state information in the form of the transmit and receive correlation matrices is assumed to be available at the transmitter. The convexity of the design based on SER minimization is established and exploited. The advantage of the developed technique is its low complexity. We also find various relationships of the proposed designs to the existing precoding techniques, and derive very simple closed-form precoders for special cases such as two or three receive antennas and constant receive correlation. The numerical simulations illustrate the excellent SER performance of the proposed precoders

    Performance of a non-orthogonal STBC over correlative fading channels

    Get PDF
    [[abstract]]It has been recently shown that, for non-orthogonal space-time block code (STBC), the multiple-input multiple-output (MIMO) maximum-likelihood (ML) metric can also be decoupled into single-input single-output (SISO) ML metrics for decoding simplification just as for orthogonal STBC. In this work, we utilized the decoupled metrics of a non-orthogonal STBC to derive the symbol error rate (SER) in correlative fading channels and show that, when the non-orthogonal code is generated by converting an orthogonal code using proper precoding, the conversion will improve the SER performance when the MIMO channels are correlated.[[conferencetype]]國際[[conferencedate]]20080604~20080606[[booktype]]紙本[[conferencelocation]]Hoi an, Vietna

    Optimized Compressed Sensing Matrix Design for Noisy Communication Channels

    Get PDF
    We investigate a power-constrained sensing matrix design problem for a compressed sensing framework. We adopt a mean square error (MSE) performance criterion for sparse source reconstruction in a system where the source-to-sensor channel and the sensor-to-decoder communication channel are noisy. Our proposed sensing matrix design procedure relies upon minimizing a lower-bound on the MSE. Under certain conditions, we derive closed-form solutions to the optimization problem. Through numerical experiments, by applying practical sparse reconstruction algorithms, we show the strength of the proposed scheme by comparing it with other relevant methods. We discuss the computational complexity of our design method, and develop an equivalent stochastic optimization method to the problem of interest that can be solved approximately with a significantly less computational burden. We illustrate that the low-complexity method still outperforms the popular competing methods.Comment: Submitted to IEEE ICC 2015 (EXTENDED VERSION

    상향링크 셀룰러 시스템에서 채널 상관 기반의 협력 사용자 스케줄링 기법

    Get PDF
    In this paper, we consider multi-user scheduling to avoid other cell interference (OCI) in the uplink of cellular systems. The base station (BS) determines a user group that can minimize the interference from other cells by exploiting the spatial correlation matrix of users from adjacent BSs. The proposed scheme is applicable to multi-input multi-output (MIMO) as well as single-input multi-output (SIMO) environments by applying an eigen-beamforming technique, enabling the use of flexible antenna structures at the transmitter. Simulation results show that the proposed multi-cell scheduling significantly increase the ergodic capacity by avoiding the OCI compared to conventional scheduling schemes, particularly in high mobility and highly correlated channel environments.Seoul R&BD Progra

    General Rank Multiuser Downlink Beamforming With Shaping Constraints Using Real-valued OSTBC

    Full text link
    In this paper we consider optimal multiuser downlink beamforming in the presence of a massive number of arbitrary quadratic shaping constraints. We combine beamforming with full-rate high dimensional real-valued orthogonal space time block coding (OSTBC) to increase the number of beamforming weight vectors and associated degrees of freedom in the beamformer design. The original multi-constraint beamforming problem is converted into a convex optimization problem using semidefinite relaxation (SDR) which can be solved efficiently. In contrast to conventional (rank-one) beamforming approaches in which an optimal beamforming solution can be obtained only when the SDR solution (after rank reduction) exhibits the rank-one property, in our approach optimality is guaranteed when a rank of eight is not exceeded. We show that our approach can incorporate up to 79 additional shaping constraints for which an optimal beamforming solution is guaranteed as compared to a maximum of two additional constraints that bound the conventional rank-one downlink beamforming designs. Simulation results demonstrate the flexibility of our proposed beamformer design

    Rank-Two Beamforming and Power Allocation in Multicasting Relay Networks

    Full text link
    In this paper, we propose a novel single-group multicasting relay beamforming scheme. We assume a source that transmits common messages via multiple amplify-and-forward relays to multiple destinations. To increase the number of degrees of freedom in the beamforming design, the relays process two received signals jointly and transmit the Alamouti space-time block code over two different beams. Furthermore, in contrast to the existing relay multicasting scheme of the literature, we take into account the direct links from the source to the destinations. We aim to maximize the lowest received quality-of-service by choosing the proper relay weights and the ideal distribution of the power resources in the network. To solve the corresponding optimization problem, we propose an iterative algorithm which solves sequences of convex approximations of the original non-convex optimization problem. Simulation results demonstrate significant performance improvements of the proposed methods as compared with the existing relay multicasting scheme of the literature and an algorithm based on the popular semidefinite relaxation technique

    Beamforming Optimization for Full-Duplex Wireless-powered MIMO Systems

    Get PDF
    We propose techniques for optimizing transmit beamforming in a full-duplex multiple-input-multiple-output (MIMO) wireless-powered communication system, which consists of two phases. In the first phase, the wireless-powered mobile station (MS) harvests energy using signals from the base station (BS), whereas in the second phase, both MS and BS communicate to each other in a full-duplex mode. When complete instantaneous channel state information (CSI) is available, the BS beamformer and the time-splitting (TS) parameter of energy harvesting are jointly optimized in order to obtain the BS-MS rate region. The joint optimization problem is non-convex, however, a computationally efficient optimum technique, based upon semidefinite relaxation and line-search, is proposed to solve the problem. A sub-optimum zero-forcing approach is also proposed, in which a closed-form solution of TS parameter is obtained. When only second-order statistics of transmit CSI is available, we propose to maximize the ergodic information rate at the MS, while maintaining the outage probability at the BS below a certain threshold. An upper bound for the outage probability is also derived and an approximate convex optimization framework is proposed for efficiently solving the underlying non-convex problem. Simulations demonstrate the advantages of the proposed methods over the sub-optimum and half-duplex ones.Comment: 14 pages, accepte
    corecore