278 research outputs found

    Real-Time Parallel Trajectory Optimization with Spatiotemporal Safety Constraints for Autonomous Driving in Congested Traffic

    Full text link
    Multi-modal behaviors exhibited by surrounding vehicles (SVs) can typically lead to traffic congestion and reduce the travel efficiency of autonomous vehicles (AVs) in dense traffic. This paper proposes a real-time parallel trajectory optimization method for the AV to achieve high travel efficiency in dynamic and congested environments. A spatiotemporal safety module is developed to facilitate the safe interaction between the AV and SVs in the presence of trajectory prediction errors resulting from the multi-modal behaviors of the SVs. By leveraging multiple shooting and constraint transcription, we transform the trajectory optimization problem into a nonlinear programming problem, which allows for the use of optimization solvers and parallel computing techniques to generate multiple feasible trajectories in parallel. Subsequently, these spatiotemporal trajectories are fed into a multi-objective evaluation module considering both safety and efficiency objectives, such that the optimal feasible trajectory corresponding to the optimal target lane can be selected. The proposed framework is validated through simulations in a dense and congested driving scenario with multiple uncertain SVs. The results demonstrate that our method enables the AV to safely navigate through a dense and congested traffic scenario while achieving high travel efficiency and task accuracy in real time.Comment: 8 pages, 7 figures, accepted for publication in the 26th IEEE International Conference on Intelligent Transportation Systems (ITSC 2023

    An Optimization-Based Receding Horizon Trajectory Planning Algorithm

    Full text link
    This paper presents an optimization-based receding horizon trajectory planning algorithm for dynamical systems operating in unstructured and cluttered environments. The proposed approach is a two-step procedure that uses a motion planning algorithm in a first step to efficiently find a feasible, but possibly suboptimal, nominal solution to the trajectory planning problem where in particular the combinatorial aspects of the problem are solved. The resulting nominal trajectory is then improved in a second optimization-based receding horizon planning step which performs local trajectory refinement over a sliding time window. In the second step, the nominal trajectory is used in a novel way to both represent a terminal manifold and obtain an upper bound on the cost-to-go online. This enables the possibility to provide theoretical guarantees in terms of recursive feasibility, objective function value, and convergence to the desired terminal state. The established theoretical guarantees and the performance of the proposed algorithm are verified in a set of challenging trajectory planning scenarios for a truck and trailer system.Comment: Submitted for IFAC World Congress 202

    Search-Based Motion Planning for Performance Autonomous Driving

    Full text link
    Driving on the limits of vehicle dynamics requires predictive planning of future vehicle states. In this work, a search-based motion planning is used to generate suitable reference trajectories of dynamic vehicle states with the goal to achieve the minimum lap time on slippery roads. The search-based approach enables to explicitly consider a nonlinear vehicle dynamics model as well as constraints on states and inputs so that even challenging scenarios can be achieved in a safe and optimal way. The algorithm performance is evaluated in simulated driving on a track with segments of different curvatures.Comment: Accepted to IAVSD 201

    Optimal Trajectory Planning for Autonomous Driving Integrating Logical Constraints: An MIQP Perspective

    No full text
    International audienceThis paper considers the problem of optimal trajectory generation for autonomous driving under both continuous and logical constraints. Classical approaches based on continuous optimization formulate the trajectory generation problem as a nonlinear program, in which vehicle dynamics and obstacle avoidance requirements are enforced as nonlinear equality and inequality constraints. In general, gradient-based optimization methods are then used to find the optimal trajectory. However, these methods are ill-suited for logical constraints such as those raised by traffic rules, presence of obstacles and, more generally, to the existence of multiple maneuver variants. We propose a new formulation of the trajectory planning problem as a Mixed-Integer Quadratic Program. This formulation can be solved effectively using widely available solvers, and the resulting trajectory is guaranteed to be globally optimal. We apply our framework to several scenarios that are still widely considered as challenging for autonomous driving, such as obstacle avoidance with multiple maneuver choices, overtaking with oncoming traffic or optimal lane-change decision making. Simulation results demonstrate the effectiveness of our approach and its real-time applicability
    • …
    corecore