21 research outputs found

    Optimum Pilot Overhead in Wireless Communication: A Unified Treatment of Continuous and Block-Fading Channels

    Full text link
    The optimization of the pilot overhead in single-user wireless fading channels is investigated, and the dependence of this overhead on various system parameters of interest (e.g., fading rate, signal-to-noise ratio) is quantified. The achievable pilot-based spectral efficiency is expanded with respect to the fading rate about the no-fading point, which leads to an accurate order expansion for the pilot overhead. This expansion identifies that the pilot overhead, as well as the spectral efficiency penalty with respect to a reference system with genie-aided CSI (channel state information) at the receiver, depend on the square root of the normalized Doppler frequency. Furthermore, it is shown that the widely-used block fading model is only a special case of more accurate continuous fading models in terms of the achievable pilot-based spectral efficiency, and that the overhead optimization for multiantenna systems is effectively the same as for single-antenna systems with the normalized Doppler frequency multiplied by the number of transmit antennas.Comment: Submitted to IEEE Trans. Wireless Communication

    Soft-Decision-Driven Channel Estimation for Pipelined Turbo Receivers

    Full text link
    We consider channel estimation specific to turbo equalization for multiple-input multiple-output (MIMO) wireless communication. We develop a soft-decision-driven sequential algorithm geared to the pipelined turbo equalizer architecture operating on orthogonal frequency division multiplexing (OFDM) symbols. One interesting feature of the pipelined turbo equalizer is that multiple soft-decisions become available at various processing stages. A tricky issue is that these multiple decisions from different pipeline stages have varying levels of reliability. This paper establishes an effective strategy for the channel estimator to track the target channel, while dealing with observation sets with different qualities. The resulting algorithm is basically a linear sequential estimation algorithm and, as such, is Kalman-based in nature. The main difference here, however, is that the proposed algorithm employs puncturing on observation samples to effectively deal with the inherent correlation among the multiple demapper/decoder module outputs that cannot easily be removed by the traditional innovations approach. The proposed algorithm continuously monitors the quality of the feedback decisions and incorporates it in the channel estimation process. The proposed channel estimation scheme shows clear performance advantages relative to existing channel estimation techniques.Comment: 11 pages; IEEE Transactions on Communications 201

    Study of the Alamouti-OFDM system using ZP technique and training symbols in multi path selective fading channel

    Get PDF
    In this paper, we propose a modified Alamouti code matrix and it associated with zero padding orthogonal frequency division multiplexing known as (Alamouti- ZP OFDM). Which zero padding (or zeros samples) are adopted over the OFDM symbols that construct also the encoded symbols of the Alamouti matx. Training symbols are applied for the channel estimation. Furthermore, the ML decoding algorithm  is used to get output bits which the BER can be measured. Using the selective multi path fading as model for wireless channel to evaluate the performance provided by the system proposed. The performance of  the approach proposed is based on BER parameter. For that, the system  is simulated  in two profiles of paths number (3 paths, and 6 paths) have used, which the spread delays of these paths are taken (in millisecond and in microsecond) respectively. Different data stream are simulated and compared. And the BER performance are compared also for ifft lengths 512 and 1024 and the BER results presented for all parameters of (paths number, and spread delays). The simulation  results show that the system  presented performed good even the spread delays of multi path channel are great (microseconds or milliseconds) and even increased  the data simulated from  increasing the parallel of the data streams transmitted in the system study . So, the system could keen their effectiveness against of fading channel and ISI phenomenon.  And finaly, it is shown that increasing IFFT samples in the simulation process the improvements are more enhanced of the approach proposed

    Spectral Efficiency Maximization of a Single Cell Massive MU-MIMO Down-Link TDD System by Appropriate Resource Allocation

    Get PDF
    This paper deals with the problem of maximizing the spectral efficiency in a massive multi-user MIMO downlink system, where a base station is equipped with a very large number of antennas and serves single-antenna users simultaneously in the same frequency band, and the beamforming training scheme is employed in the time-division duplex mode. An optimal resource allocation that jointly selects the training duration on uplink transmission, the training signal power on downlink transmission, the training signal power on uplink transmission, and the data signal power on downlink transmission is proposed in such a way that the spectral efficiency is maximized given the total energy budget. Since the spectral efficiency is the main concern of this work, and its calculation using the lower bound on the achievable rate is computationally very intensive, in this paper, we also derive approximate expressions for the lower bound of achievable downlink rate for the maximum ratio transmission (MRT) and zero-forcing (ZF) precoders. The computational simplicity and accuracy of the approximate expressions for the lower bound of achievable downlink rate are validated through simulations. By employing these approximate expressions, experiments are conducted to obtain the spectral efficiency of the massive MIMO downlink time-division duplexing system with the optimal resource allocation and that of the beamforming training scheme. It is shown that the spectral efficiency of the former system using the optimal resource allocation is superior to that yielded by the latter scheme in the cases of both MRT and ZF precoders
    corecore