11,656 research outputs found

    Analysis of Power-aware Buffering Schemes in Wireless Sensor Networks

    Full text link
    We study the power-aware buffering problem in battery-powered sensor networks, focusing on the fixed-size and fixed-interval buffering schemes. The main motivation is to address the yet poorly understood size variation-induced effect on power-aware buffering schemes. Our theoretical analysis elucidates the fundamental differences between the fixed-size and fixed-interval buffering schemes in the presence of data size variation. It shows that data size variation has detrimental effects on the power expenditure of the fixed-size buffering in general, and reveals that the size variation induced effects can be either mitigated by a positive skewness or promoted by a negative skewness in size distribution. By contrast, the fixed-interval buffering scheme has an obvious advantage of being eminently immune to the data-size variation. Hence the fixed-interval buffering scheme is a risk-averse strategy for its robustness in a variety of operational environments. In addition, based on the fixed-interval buffering scheme, we establish the power consumption relationship between child nodes and parent node in a static data collection tree, and give an in-depth analysis of the impact of child bandwidth distribution on parent's power consumption. This study is of practical significance: it sheds new light on the relationship among power consumption of buffering schemes, power parameters of radio module and memory bank, data arrival rate and data size variation, thereby providing well-informed guidance in determining an optimal buffer size (interval) to maximize the operational lifespan of sensor networks

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Quality-optimized predictive analytics

    Get PDF
    On-line statistical and machine learning analytic tasks over large- scale contextual data streams coming from e.g., wireless sensor networks, Inter- net of Things environments, have gained high popularity nowadays due to their significance in knowledge extraction, regression and classification tasks, and, more generally, in making sense from large-scale streaming data. The quality of the received contextual information, however, impacts predictive analytics tasks especially when dealing with uncertain data, outliers data, and data con- taining missing values. Low quality of received contextual data significantly spoils the progressive inference and on-line statistical reasoning tasks, thus, bias is introduced in the induced knowledge, e.g., classification and decision making. To alleviate such situation, which is not so rare in real time contextual information processing systems, we propose a progressive time-optimized data quality-aware mechanism, which attempts to deliver contextual information of high quality to predictive analytics engines by progressively introducing a certain controlled delay. Such a mechanism progressively delivers high qual- ity data as much as possible, thus eliminating possible biases in knowledge extraction and predictive analysis tasks. We propose an analytical model for this mechanism and show the benefits stem from this approach through com- prehensive experimental evaluation and comparative assessment with quality- unaware methods over real sensory multivariate contextual data

    Consensus and Products of Random Stochastic Matrices: Exact Rate for Convergence in Probability

    Full text link
    Distributed consensus and other linear systems with system stochastic matrices WkW_k emerge in various settings, like opinion formation in social networks, rendezvous of robots, and distributed inference in sensor networks. The matrices WkW_k are often random, due to, e.g., random packet dropouts in wireless sensor networks. Key in analyzing the performance of such systems is studying convergence of matrix products WkWk−1...W1W_kW_{k-1}... W_1. In this paper, we find the exact exponential rate II for the convergence in probability of the product of such matrices when time kk grows large, under the assumption that the WkW_k's are symmetric and independent identically distributed in time. Further, for commonly used random models like with gossip and link failure, we show that the rate II is found by solving a min-cut problem and, hence, easily computable. Finally, we apply our results to optimally allocate the sensors' transmission power in consensus+innovations distributed detection
    • …
    corecore