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Quality-Optimized Predictive Analytics

Christos Anagnostopoulos

Abstract On-line statistical and machine learning analytic tasks over large-
scale contextual data streams coming from e.g., wireless sensor networks, Inter-
net of Things environments, have gained high popularity nowadays due to their
significance in knowledge extraction, regression and classification tasks, and,
more generally, in making sense from large-scale streaming data. The quality
of the received contextual information, however, impacts predictive analytics
tasks especially when dealing with uncertain data, outliers data, and data con-
taining missing values. Low quality of received contextual data significantly
spoils the progressive inference and on-line statistical reasoning tasks, thus,
bias is introduced in the induced knowledge, e.g., classification and decision
making. To alleviate such situation, which is not so rare in real time contextual
information processing systems, we propose a progressive time-optimized data
quality-aware mechanism, which attempts to deliver contextual information
of high quality to predictive analytics engines by progressively introducing a
certain controlled delay. Such a mechanism progressively delivers high qual-
ity data as much as possible, thus eliminating possible biases in knowledge
extraction and predictive analysis tasks. We propose an analytical model for
this mechanism and show the benefits stem from this approach through com-
prehensive experimental evaluation and comparative assessment with quality-
unaware methods over real sensory multivariate contextual data.
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1 Introduction

In real-life scenarios, wireless sensor networks in Internet of Things (IoT) envi-
ronments have been widely utilized in contextual information monitoring and
on-line large-scale predictive analytics, including environmental monitoring,
forest/marine environmental monitoring, and smart cities intelligence appli-
cations. IoT predictive intelligence applications process contextual informa-
tion captured from a number of dedicated sensor (stationary and/or mobile)
nodes (sources of contextual information) with advanced sensing and com-
puting capabilities. Sources sense and monitor, e.g., physical contextual pa-
rameters (context) and transmit the collected pieces of context to a central
predictive analytics and information processing system (hereinafter referred
to as System) using wireless communication technologies, e.g., multi-hop com-
munication. However, the sensory field of the sources, e.g., IoT wireless de-
vices within a city area, has a number of inherent characteristics including
uncontrollable environments and topological constraints. Sources are typically
powered by batteries and thus having limited energy resources. Moreover, envi-
ronmental monitoring, IoT smart applications, and on-line statistical analytics
applications require efficient, accurate and timely data analysis in order to fa-
cilitate (near) real-time critical decision-making, and situation- and context-
awareness.

Accurate predictive analytics relies on the quality of context and quality of
context inference expressed by meta-information [1], e.g., contextual value va-
lidity thresholds, outliers, expiration thresholds, contextual information with
enhanced semantics. Raw contextual observations collected from sources, how-
ever, may have low quality and reliability due to limited energy and computa-
tional resources and harsh deployment environments. Predictive analytic tasks
like outliers detection, multivariate regression and classification, information
fusion (e.g., aggregation), and situational context inference and reasoning, are
in need of high quality of sensed context. Inaccurate observations resulting
from sources malfunction need to be corrected or removed [8]. This however
yields bias in the extracted knowledge and analytics tasks, e.g., false alarms for
fire detection, high prediction error in regression models, incompatible context
inference, high misclassification errors, inconsistent reasoning. Machine and
Statistical Learning (MSL) methods are adopted for (i) identifying and (ii)
(ideally) correcting problematic context (e.g., missing values, obsolete data,
and outliers). Such MSL methods are of high importance for knowledge ex-
traction, inference, and decision making over incomplete underlying data [6].
Most MSL techniques, such as neural networks and support vector machines,
fail if one or more inputs contains missing values and thus cannot be used for
predictive analytics and decision-making purposes [7].

In the state of the art, it is possible to find quite a few IoT monitoring
and predictive analytics solutions such as forest monitoring [2], fire-event pre-
diction and classification [3], agriculture monitoring [4], marine environment
states prediction [5], watershed prediction systems [20], health states predic-
tion in rivers [21], or energy management solutions to reduce both the amount
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of resources needed and the atmospheric emissions [22]. The reader could also
refer to the survey [23] and the references therein. Sensor networks as the
pillars of the contextual information sources promise to revolutionize sensing
in a wide range of intelligent application domains because of their reliability,
accuracy, flexibility, cost effectiveness [24] and ease of deployment. However,
contextual data streams pose a challenge to large-scale predictive analytics
because, traditional approaches to quality control cannot efficiently (i) handle
large-scale observations and (ii) deal with the demands of real-time process-
ing. There is an increasing need for predictive intelligence methods to
check and correct (sensed) context to ensure that is delivered in near real time
and is of the highest quality. Time-optimized context quality control expe-
dites post-processing and analytics (e.g., missing values substitutions, concept
drift correction) so that the final delivered context is of high quality for fur-
ther processing regression/classification tasks. This motivated us to introduce
an optimally scheduled context quality aware mechanism which improves the
quality of the delivered context to the System for near real time predictive ana-
lytics and knowledge extraction. The proposed mechanism materializes quality
assessment prior to delivery of the context to the System by minimizing the
induced bias in statistical inference and/or estimation processes due to prob-
lematic sensed context. As it will be shown in the experimental evaluation
section, our mechanism delivers contextual information to the System of high
quality (e.g., as much non-problematic and accurate data as possible) inducing
a relatively small delay compared to solutions that either immediately deliver
context or decide on context delivery upon threshold-based rules that do not
take into account the quality dynamics of the contextual data.

2 Rationale

The rationale behind the proposed mechanism is to deliver high quality con-
text to the predictive analytics System through a stochastically, optimally con-
trolled (delivery) delay. Within such delay tolerant delivery, the mechanism op-
timally decides when to deliver context with the highest possible quality, thus,
improving predictive analytics tasks. The mechanism delivers context (repre-
sented by a row vector) x = [x1, . . . , xn] of n measurements (values), where
each xi corresponding to the i-th source, with the least possible problematic
pieces of data. We require that System receive good context x in the sense that
it consists with as many non-problematic values as possible. This is mandatory
since the quality of x affects the predictive analytics tasks for monitoring the
state of nature in the receptive field and/or MSL methods for knowledge ex-
traction. We abstract such methods/tasks through a function f(x) over sensed
context x, which formulates a MSL/predictive analytics process. For instance,
f(x) refers to a statistical metric like mean value, or to a multivariate regres-
sion model, e.g., linear regression model f(x) = w>x + b, b > 0 with x being
the predictor vector and w the learned parameter, or to a classification model,
e.g., f(x) = sign(w>x + b). Inevitably, the more non-problematic values the
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System receives, the more accurate an analytics process in terms of f(x) can
be achieved. Our mechanism attempts to deliver as good context as possible
to achieve a high quality of the invoked analytics process. In that sense, we
delay the delivery of context to the System in hope of observing a relatively
good one to deliver, however at the expense of a certain delay. Figure 1 shows
the rationale of the proposed mechanism. The baseline solution is to immedi-
ately deliver the current context x to the System not taking into account the
context quality semantics.

Fig. 1 Overall idea: context x from the sensory field is fed to the optimally quality-driven
scheduled mechanism, which either delivers x to the System or waits for possibly high quality
context.

2.1 Motivation

We report on four real-life cases / scenarios in order to further exemplify our
motivation on the application of quality-optimized predictive analytics.

Case 1 [Incomplete Contextual Data]: If, at a given time instance, a
portion of the received values to System are problematic, say x1, . . . , xm with
m < n missing values, then there might be a bias in further processing of x.
For instance, consider the deviation on estimating the mean value of n −m
observed values i.e., f(x) = 1

n−m
∑n−m
i=1 xi instead of n values 1

n

∑n
i=1 xi, or

on estimating the order statistics, e.g., f(x) = min(x1, . . . , xn−m) instead of
min(x1, . . . , xn); recall the ‘effect size’ problem in statistics [26] where the
statistical error is proportional to 1/

√
n−m. Moreover, a missing value sub-

stitution algorithm (MVA) [27] running on the System, which is able to predict
the most plausible values for the m missing values of x, results in higher accu-
racy when m is relatively smaller compared to n. Hence, a delay in avoiding
the delivery of bad x (with a high number of missing values) could be of high
importance in terms of accuracy of prediction and, more interestingly, avoid-
ing the MVA invocation each time a bad vector is available, thus eliminating
redundant waste of resources [9].

Case 2 [Validity of Contextual Data]: Consider that an analytic task
like concept drift detection or novelty detection task that requires its input x
to contain a high number of non-expired values. Here we deal with the fact



Quality-Optimized Predictive Analytics 5

that the validity of each value xi is characterized by an expiration window.
That is, for each value xi there is an expiration indicator Ii(xi) = 1 if xi is
a valid value; 0 otherwise (i.e., expired value). The mechanism has to ‘delay’
the delivery of x to the detection algorithm by attempting to find a better
vector of n values at some unknown time in the future, which maximizes the
f(x) =

∑n
i=1 Ii(xi), i.e., context that contains a high number of valid values.

Case 3 [Contextualized Inference]: Contextual data fusion process-
ing has gained significant importance [10]. Contextual data fusion refers to
the problem of combining diverse and conflicting contextual information pro-
vided by sources, in a consistent and coherent manner [11]. The objective of
the contextualized inference is to infer a sub-taxonomy of situations (from
the very abstract to the very specific) of a system that is being observed or
taxonomy of activities being performed [13], [14]. Specifically, contextualized
inference methods [14] are generally applied in situation- and context-aware
systems[17], [16], where a more specific situation (positioned at the lower lev-
els of the situational taxonomy) is represented by the logical conjunction of
situational components [12], [15]. Let us adopt the by far popular IF-THEN
situational knowledge representation inference rule, i.e., the logical conjunc-
tion f(x) =

∧n
i=1(fi(xi)) ∈ {TRUE, FALSE} of n logical operators fi(xi) over

aggregated (or not) values xi, e.g., the situational component fi(xi) = TRUE if

xi ∈ [xlowi , xhighi ]; FLASE, otherwise. That is, f(x) is envisaged as an IF-THEN
situational rule for evaluating the current situational context given the current
context x. A predictive analytics system caters for inferring the most specific
situation within a situational taxonomy. That is, situation f(x) conveys more
information to the system than situation f ′(x) iff one can deduct f ′(x) from
f(x), i.e., f(x) contains more TRUE situational components than the f ′(x).
Such a situation-aware system has to ‘delay’ its situational inference by ob-
serving as much true facts, i.e., components with {xi = TRUE}, as possible to
reason about more specific situations, which further activates more specific
actuation rules and decisions, compared with the ‘trivial’ abstract situations,
i.e., those containing a high number of {xi = FALSE} components.

Case 4 [Progressive and Maintenance Analytics]: The author would
like to mention the prior work [18] and [19] on dealing with the optimal main-
tenance of the top-k list of objects over incomplete multivariate data streams
and intelligent progressive Big Data analytics. The work [18] refers to an intel-
ligent scheduling of top-k list maintenance with the purpose of increasing the
quality of the delivered list to a analytics back-end system. Generally speak-
ing, in this case the f(x) abstracts the degree of updates of sequential partial
results x from merged top-k lists. Hence, a predictive analytics system ‘delays’
its final top-k list maintenance based on the up-to-now seen quality of par-
tial results. The work in [19] deals with continuous queries over a distributed
federation of data nodes and returns the final outcome to users or analytics
applications. The system based on the current quality of the up-to-now re-
trieved partial results (abstracted by a non-trivial f(x) over partial results x)
engages a sub-set of query processors to further execute the issued queries. In
both analytics systems, one has to define an optimally scheduled mechanism
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over queries to provide optimal decisions on when to invoke a maintenance
process [18] or further analyzing data given analytics queries [19].

In all these real-life cases, the predictive analytics system requires more
information or quality information in order to proceed with an analytics task,
e.g., either situational inference, aggregation, or classification tasks. However, a
delay in the delivery of vectors x to the System incurs some penalty, especially
when dealing with real time predictive analytics as in the above mentioned
cases. On the one hand, we require immediate consumption of the observed
pieces of context x by the predictive analytic tasks. On the other hand, we
require a high quality of the analytics / prediction / classification results,
which fundamentally relies on the quality of the received pieces of context,
i.e., the input to the System. We attempt to reduce the redundant invocations
of predictive analytics tasks with inputs of low quality, which inevitably lead to
‘biased’ inference and statistical reasoning results. Evidently, there is a trade-
off between delaying the consumption of the observed context (thus feeding
the System with high quality of context) and the near real time processing
associated with a delay-tolerant predictive analytics process. The problem here
is to determine when to deliver high quality context balancing between quality
of analytics results and near real time predictive analytics.

2.2 Contribution & Organization

The contribution of this paper is an analytical stochastic optimization mech-
anism, which monitors streams of pieces of context and optimally determines
when to deliver context of high quality to the System for predictive analytics.
Such mechanism is based on the principles of the theory of optimal stopping
[28] through which we derive an optimal decision time to ‘stop’ observing the
contextual data stream and to ‘deliver’ context such that the expected predic-
tive analytics quality is maximized given a certain cost per observation. The
theory of optimal stopping [28] is proved to be very efficient in cases where
we try to find the appropriate decision time instance to stop the observation
of a stochastic process with the objective of maximizing our payoff or reward.
Naturally, we build our mechanism on the principles of the optimal stopping
theory to maximize the quality of predictive analytics results by inducing a
controlled delay. Through this delay we attempt to balance between imme-
diate and delayed predictive analytics in hopes of observing higher quality
pieces of contextual information as illustrated in Cases 1–3. The outcome of
the mechanism indicates whether we should stop observing the quality of the
context streams and activate a predictive analytics and/or MSL method, or to
continue. This delay-tolerant activation supports intelligent analytics applica-
tions that can tolerate some delay in hopes of obtaining high quality results,
like: (i) progressive query analytics applications in large-scale distributed sys-
tems [19], (ii) results maintenance of rank-based queries over data streams
[18], (iii) efficient networking analytics applications for location-based services
[35], (iv) efficient and progressive recommendations of recommendation sys-
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tems and applications [36], (v) efficient user’s mobility and trajectory patterns
extraction in mobile computing environments [37], (vi) quality information for-
warding and dissemination in mobile applications over IoT environments [38],
[39], [40], and (vii) security analytics for location-privacy [41].

As it will be shown in the performance assessment, our mechanism pro-
vides a wide range of quality results, ranging between medium quality results
with almost zero delay and high quality results with an acceptable delay.
Through this delay (in terms of the application tolerance), the System saves
computational resources and eliminates redundant activations of MSL meth-
ods/analytics tasks.

The contribution of this work is summarized as follows:

– A novel stochastic optimization mechanism which decides when a predic-
tive analytics task should be activated over large-scale contextual data
streams by guaranteeing the highest possible quality results.

– An analytical model under the principles of the optimal stopping theory
that derives the optimal time for activating the predictive analytics tasks.

– Comprehensive experimental results showcasing the benefits of our mech-
anism to real life intelligent predictive analytics applications over real con-
textual data involving widely applied aggregation analytics vis-à-vis the
threshold-based and immediate context delivery approaches.

The paper is organized as follows: Section 3 introduces the concept of con-
text quality for data streams of (possibly problematic) contextual data and
some preliminaries in the theory of optimal stopping. Section 4 formulates
and provides a solution to the quality-optimized mechanism for the consid-
ered stochastic optimization problem. Section 5 reports on the experimental
results of our mechanism through a sensitivity analysis of the basic parameters
and provides a comparative assessment with threshold-based and immediate
context delivery rules over real sensors contextual data. Finally, Section 6 con-
cludes the paper and discusses future research on that topic.

3 Definitions

Table 1 refers to the nomenclature.

3.1 Quality of Contextual Information

Consider a discrete time domain T = {1, 2, . . .} such that x = [x1, . . . , xn] con-
tains real values xi ∈ R at time t ∈ T for each dimension i ∈ 1, . . . , n (or in a
compact notation i ∈ [n]). We assume that xi at time t refers to the measure-
ment of source i or the aggregation result over K measurements xi1, . . . , xiK
launched on source i, K > 0. (The value xij could refer to a measurement of
the j-th neighboring node in the spatial neighborhood of source i, j ∈ [K].)
Each measurement xi is received instantly and that a new possible value might
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Concept Description
t, T discrete time instance, optimal stopping time instance
n number of contextual data streams
x context vector

f(x) predictive analytics function over x (abstraction)
β probability of ‘good’ value
Xi
t quality indicator of the i-th measurement at time t
Y quality reward
M quantity of ‘good’ values
Ft filtration up to time t
V ∗ maximum expected quality reward
y scalar value/estimation of V ∗

c delay cost per observation
Lt log-likelihood up to t

Table 1 Nomenclature.

be received from the same source i only at the next time slot t+ 1, i.e., in the
interval [t, t+ 1) source i reports only once or not at all.

We proceed with a generic model representation to capture the idea of
a good piece of context x. Specifically, the characterization of x as a ‘good’
piece of context intuitively indicates that x contains a relatively high number
of good values, e.g., a percentage of 75% of the n values of context x refers to
non-missing values. A ‘good’ value xi at time t means, for instance, that xi is
a valid value, a non-incomplete value, or a TRUE fact/situation, i.e., Ii(xi) = 1
as discussed in Cases 1 and 2 or Ii(xi) = TRUE in Case 3, while Ii(xi) = 0
indicates a bad value, or a missing datum (Cases 1,2) or a situation does not
hold true (Ii(xi) = FALSE in Case 3). Or, if xi is observed at time t thus not
being missed as discussed in Case 1, then xi is called a good value, otherwise
it is called a bad value, i.e., a missing value. Based on all these interpretations,
we provide the following definitions:

Definition 1 The quality indicator of the i-th measurement (i.e., from the
i-th source) is define as the random variable (r.v.) Xi

t such that:

Xi
t =

{
1(TRUE) with probability βi

0(FALSE) with probability 1− βi,
(1)

where a zero value, i.e., Xi
t = 0, indicates a bad value of dimension i at time

t while a value Xi
t = 1 refers to a good value xi at t.

The r.v. Xi
1, X

i
2, . . . are independent and identically distributed (i.i.d.).

with expectation E[Xi] = 1 · P (Xi = 1) + 0 · P (Xi = 0) = βi > 0 given
that βi ∈ (0, 1), i ∈ [n]. The value of βi can be estimated by historical data
and/or combined with information provided by the manufacturer of source i,
e.g., quantifying sensor node degree of reliability of measurement. (Remark
2 provides an estimation of the β parameter.) Each time t the mechanism
observes context x and does not immediately deliver it to the System, we
encounter fixed a (delay) cost of observation c > 0.
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Definition 2 We define as quality reward of context x at time t the r.v. Yt,
which refers to the quantity of the good values Mt =

∑n
i=1X

i
t minus the total

observation cost up to time t, i.e.,

Yt =

n∑
i=1

Xi
t − t · c = Mt − t · c. (2)

3.2 Preliminaries on the Optimal Stopping Theory

The theory of optimal stopping [29], [28] is concerned with the problem of
choosing a time instance to take a certain action, in order to minimize an
expected loss (or maximize an expected payoff). A stopping rule problem is
associated with:

– a sequence of random variables (r.v.) M1,M2, . . ., whose joint distribution
is assumed to be known and

– a sequence of payoff (reward) functions (Yt(M1, . . . ,Mt))1≤t which depend
only on the observed values of the corresponding r.v.s M1, . . . ,Mt.

The available information up to t is a sequence Ft of values of the r.v.s
M1, . . . ,Mt (a.k.a. filtration). The optimal stopping rule problem is defined
as follows: We are observing the sequence of the r.v.s (Mt)1≤t, and at each
time instance t, we can choose to either stop observing or continue. If we stop
observing at time instance t, we get reward Yt. We desire to choose a stopping
rule or stopping time to maximize our expected reward.

Definition 3 An optimal stopping rule problem is to find the stopping time
T which maximizes the expected reward, i.e., E[YT ] = sup0≤t≤T E[Yt]. Note,
T might be ∞.

4 Time-optimized Quality-driven Mechanism

The mechanism observes the sequence of r.v. M1,M2, . . . ,Mt without deliver-
ing the corresponding pieces of context x1,x2, . . . ,xt to the System. Our aim
is to find the best strategy in the sense of having the highest expected quality
reward E[Y ] at the lowest cumulative cost of delay. At each time t we only
need to decide:

– whether to deliver xt to the System, thus, proceeding with a predictive
analytic task over f(xt) or

– to continue with the next observation xt+1 without delivering xt to System,
thus, delaying the predictive analytic task.

Hence, a strategy is a function which assigns to each sequence M1,M2, . . . a
stopping time. Furthermore, since we cannot see the future, a decision to stop
observation at time t can only depend upon M1,M2, . . . Formally we have to
solve the following problem:
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Problem 1 Given the sequence of sums of quality indicators M1, . . . ,Mt, find
the optimal stopping time T which maximizes E[YT ] = sup0≤t<∞E[Yt].

The idea is to find a criterion at time instance t such that given the current
value of Mt, denoting the current quality of context observed at the mecha-
nism, the latter immediately decides whether to deliver xt to the System or
to continue to the next observation. We require an immediate decision mak-
ing over the contextual data streams, thus, avoiding any redundant computa-
tions. As it will be shown in the remainder, the mechanism at time instance
t proceeds with a time-optimized decision in O(n) time involving simply the
counting of quality indicators Xi

t from all n sources, i ∈ [n].

In order to solve Problem 1, we rest on the principle of optimality. Specifi-
cally, let T be the optimal stopping time where the supremum in our Problem
1 is attained, i.e., E[YT ] = V ∗ with V ∗ = suptE[Yt]. We can now provide the
optimality equation given the filtration Ft, i.e., after observing M1, . . . ,Mt, as
follows:

Theorem 1 Let T be an arbitrary stopping time and V ∗t = supT≥tE[Yt|Ft].
Then, V ∗t = max(Yt, E[V ∗t+1|Ft])

Proof See [28] �

The optimal stopping time T given by the principle of optimality from
Theorem 1 is represented by the rule:

T = min{t ≥ 0|Yt = V ∗t }. (3)

Let us put the reward Y0 = −∞ to force our mechanism to take at least
one observation. Also, we put Y∞ = −∞ as naturally the cost of an infinite
number of observation is infinite. Consider now the V ∗ the expected quality
reward for the System based on an optimal stopping rule in (3). Suppose that
the mechanism induces cost c and observe the M1. Note that if the mechanism
continues from this point then qualityM1 is ‘lost’ and the cost c is already paid.
Hence, it is just like starting the problem over again. That is, if the mechanism
continues from this point, the System can obtain an expected quality reward of
V ∗ but no more. Therefore, from the principle of optimality in Theorem 1 we
derive that if M1 < V ∗ then the mechanism should continue; if M1 > V ∗, then
the mechanism should stop and deliver context to the System. For M1 = V ∗

both decisions are optimal; we adopt here a stopping decision. This argument
is made at any stage t by the mechanism, thus, in our case we provide the
optimal stopping rule, which is adopted by the mechanism, as follows:

Theorem 2 Given the sequence M1, . . . ,Mt there is a real number y = V ∗

such that the optimal stopping time T is given by T = min{t ≥ 1|Mt > y}
with E[YT ] = y.
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Proof The r.v.M =
∑n
i=1X

i takes realization discrete values from {0, 1, . . . , n}.
Now, at the optimal stopping time t = T , i.e., the first time at which Mt > y,
we obtain E[YT ] = E[MT ] − E[T ]c =

∑n
i=1E[Xi

T ] − E[T ]c. Moreover, let
γ = P (M > y) and δ = 1− γ = P (M ≤ y). Then, we obtain

E[MT ] =

∞∑
k=1

E[Mk|Mk > y,M1 ≤ y, . . .Mk−1 ≤ y]

=

∞∑
k=1

E[Mk|Mk > y]δk−1 = E[M1|M1 > y]
1

γ
.

The quantity E[MT ] = 1
γE[M1|M1 > y] indicates that at the optimal stopping

time T , the expected context quality equals to the expected context quality
given that the latter is above the criterion threshold y = V ∗. In addition, for
the optimal stopping time T we obtain

E[T ] =

∞∑
k=1

kP (Mk,Mk > y,M1 ≤ y, . . .Mk−1 ≤ y)

= γ

∞∑
k=1

kδk−1 =
1

γ
.

The problem now is to compute y = V ∗. This is done through the opti-
mality equation in Theorem 1 and the above mentioned argument, i.e.,

V ∗ = E[max(M1, V
∗)]− c⇔

c = E[(M1 − V ∗)+]

That is a quality reward E[YT ] is obtained at the optimal stopping time T with
quality reward greater than y and y is the solution of the E[(M1 − y)+] = c,
with (x− y)+ = max(0, x− y)

Hence, having an y such that c = E[max(0,M1−y)] = E[(
∑n
i=1X

i
1−y)+],

we obtain

E[YT ] = E[MT ]− 1

γ
c

=
1

γ
(E[M1|M1 > y]− E[M1 − y|M1 > y])

=
1

γ
E[y]P (M1 > y) = y.

Hence, the optimal stopping time T achieves the maximal expected quality
reward E[YT ] = y. �

Remark 1 The optimal rule in Theorem 2 is optimal for our problem since
E[(M − y)+] − c is monotonically non-decreasing with M for M > y almost
surely and E[(M − y)+] is continuous in y and decreasing from +∞ to zero.
Hence there is a unique solution for y for any c > 0.
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Require: stopping quality criterion y
t← 1
Stop ← false
while Stop = false do

Receive context xt = [x1, . . . , xn]
Calculate context quality Mt =

∑n
i=1X

i
t

if Mt > y then
Stop ← true

else {take next observation}
t← t+ 1

end if
end while
Deliver xt to the System for further processing/predictive analytics.

Fig. 2 Algorithm of the quality-optimized mechanism.

The mechanism stops the observation process of pieces of context and
delivers context xt at the first time instance t at which the quantity of the
good values Mt is above a threshold y ∈ R, which refers to the highest quality
of reward that can be obtained. The problem now reduces on the evaluation
of the y value such that E[(M1−y)+] = c. The algorithm of our mechanism is
shown in Figure 2. The input of the algorithm is the stopping criterion y. At
each received context xt, the mechanism calculates Mt and decides whether
to deliver xt to the System or not. In the former case, the mechanism start-
off with the next sequence of (Mt). Evidently, the computational time for
evaluating the criterion Mt > y is O(n).

We proceed our analysis with the case where βi = β for all sources, i ∈ [n].
If we notate Z = max(M−y, 0) and FM (y) = P (M ≤ y) be the cumulative dis-
tribution function ofM then y is the solution of E[Z] = c. We have that E[Z] =
E[M−y|M > y](1−P (M ≤ y)) = (E[M |M > y]−y(1−FM (y)))(1−FM (y)).
In this case, M =

∑n
i=1X

i is a Binomial random variable with parameters

(n, β). Hence, we obtain FM (y) =
∑byc
j=0

(
n

j

)
βj(1−β)n−j . Moreover, we have

that E[M |M > y] =
∑n
m=0mP (M = m|M > y) or

E[M |M > y] =
1

1− FM (y)

n∑
m=y+1

m

(
n

m

)
βm(1− β)n−m.

Hence, the expectation of Z is:

E[Z] =

n∑
m=y+1

m

(
n

m

)
βm(1− β)n−m − y(1− FM (y))2 (4)

Based on the criterion E[Z] = c and on (4), we can find analytically the value
of y. However, the assumption βi = β,∀i does not spoil the theoretical results
and is adopted for eliminating the computations of FM (y) for solving E[(M1−
y)+] = c. Obviously, when βi 6= βj , i, j ∈ [n] then FM (y) is provided in [30]
(a.k.a. Poisson-Binomial distribution) thus, we can obtain the corresponding
value for y.



Quality-Optimized Predictive Analytics 13

Remark 2 The probability β of a non-problematic piece of contextual value
Xi can be incrementally estimated by the maximum likelihood estimation of
β of the Binomial distribution with parameters (n, β) after observing a series
of m pieces of context (xt)

m
t=1, m > 1. Specifically, recall that the probability

density function for the Binomial is

(
n

M

)
βM (1− β)n−M with M = 0, . . . , n.

Hence, the log-likelihood Lm(β) of a series of m samples of M1, . . . ,Mm is

Lm(β) =

m∑
i=1

ln

(
n

Mi

)
+ lnβ

m∑
i=1

Mi +

(
nm−

m∑
i=1

Mi

)
ln(1− β).

Since Lm(β) is a continuous function of β given m observations, i.e., β = βm,
its maximum value derives from the derivative of Lm(β) with respect to βm
by setting it equal to zero, i.e., ∂L

∂βm
= 0. After this calculation, we obtain that

up to the m-th observation, the probability βm is: βm = 1
nm

∑m
i=1Mi. Hence,

we can incrementally estimate the βm value by the previous βm−1 and the
current value of Mm by using the recursion βm = m−1

m βm−1 + 1
nmMm, with

β1 = 1
nM1. After a series of m observations, we can learn the β = βm and

then initiate our mechanism.

5 Experimental evaluation

5.1 Sensitivity analysis

5.1.1 Simulation setup

We study the performance of the proposed Optimal Delivery Approach (ODA)
on both analytical model and simulations with respect to the basic parameters,
i.e., probability of a good value β, number of sources n, and cost per obser-
vation c. We also provide a comparative assessment with a Threshold-based
Delivery Approach (TDA) on deciding when to deliver context to System for
further processing. Specifically, TDA choses a threshold θ ∈ {1, n} and delivers
context x at the first time t at which Mt ≥ θ. That is, when context x has at
least θ (out of n) non-problematic values, then TDA immediately delivers x
to System.

We define as ‘epoch’ the number of pieces of context an approach (ODA,
TDA) has observed until it decides to deliver the current context to the System.
Each time t context xt is delivered to System, then a new epoch for the
approach starts-off. TDA at the beginning of each epoch choses a threshold
θ uniformly at random from {1, n}, while ODA for every epoch applies the
threshold y as estimated using (4). In the j-th epoch we measure the quality
reward Ytj when an approach (ODA, TDA) delivers context xtj at stopping
time tj . We run experiments for N = 104 epochs, thus obtaining the average

value of Y , i.e., E[Y ] ∼ 1
N

∑N
j=1 Ytj for both approaches.
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5.1.2 Performance assessment

Figure 3(left) shows the impact of probability β on the average quality reward
E[Y ] with different cost values c for the analytical model and the simulation
results using n = 30; we obtain similar results for other n values. It is worth
mentioning how accurately the simulation curves fit with the analytical model
curves for all parameter values, denoting the capability of the proposed model
for predicting the average quality reward given β and c values. Moreover, we
observe that as β increases then we obtain higher quality rewards, as expected,
since we deal with less problematic pieces of data. With the term problematic
piece of data, here, we denote that the context vector x contains more non-
missing values than missing values. Statistically, for β > 0.5, context x is less
problematic than a piece of context x′, with β′ < 0.5, since the former contains,
at least, more non-missing values than the latter one. That is, in context x, over
50% of the n values are non-missing given that each value is non-missing with
probability over 0.5 by expectation of the Binomial distribution ∼ B(n, β).
Also, the impact of the delay cost on E[Y ] is low compared to the impact of
β especially when c > 0.5.

In Figure 3(right) we plot the average delay E[T ] against the cost c for
different values of n with β = 0.8. E[T ] indicates the average number of obser-
vations that the mechanism neglects in each epoch before stopping and then
delivering context to the System for predictive analytics. As shown in Figure
3(right), a relatively small delay is tolerated in order to proceed with delivering
context of high quality. This indicates the applicability of the proposed ODA
to near real-time predictive analytics. Moreover, as the cost per observation
decreases then a relatively higher delay is encountered, since low cost c gives
the ‘opportunity’ to the mechanism to observe more pieces of context before
stopping at a good one, thus, increasing the likelihood of receiving context of
high quality. On the other hand, a high cost value reinforces the mechanism to
stop (and thus deliver context) at an early stage of each epoch. For instance,
for c = 0.8 the mechanism, on average, delivers the second received context
to System. By tuning the cost we can control the degree of tolerance of the
statistical analytics process, with c→ 1 indicating a very conservative system,
while c→ 0 indicating high tolerance to information processing.

Let us define the Normalized Quality Indicator (NQI) 1
nMt of an approach

which evaluates the quality of the delivered context xt when stopping at time
t within an epoch. Recall that Mt indicates the number of non-problematic
values that context xt contains with 0 ≤ Mt ≤ n. Hence a high NQI value
close to unity denotes delivered context of high quality. Figure 4 illustrates
the average NQI for the ODA (for all epochs, i.e., 1

nE[M ] ∼ 1
nN

∑N
j=1Mtj )

against number of sources n for different cost values c and β ∈ {0.1, 0.8}. It is
worth noting that the NQI of an approach that stops the observation process
at an arbitrary time and, then, delivers context at that time to the System
is 1

nE[M ] = 1
nβn = β, where E[M ] = βn is the expectation of the Binomial

distribution ∼ B(n, β); we notate this value as BNQI. This approach does
not take into consideration the sequence of the r.v. M1, . . . ,Mt−1 in order to
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proceed with a decision at stopping at time t. On the other hand, ODA takes
into account the sequence (Mt)

T
t=1 thus exploiting the knowledge up to T and

then obtaining always higher values than BNQI, even for high cost values as
shown in Figure 4. In addition, NQI for relatively medium/high cost values
does not depend on the number of sources n, which means that E[M ] increases
linearly with n. Note also that the higher the β value, the higher NQI gets since
the received context is of high quality, while as β → 0 then NQI comes with
lower values. However, in that case, NQI is always higher than BNQI indicating
the applicability of ODA in cases where the received context contains a high
portion of problematic values. Indicatively, for β = 0.01 we obtain NQI = 1.16
and BNQI = 0.01, i.e., our approach delivers two orders of magnitude more
quality context with n = 30, c = 0.1. Nonetheless, we have to evaluate the
performance of the ODA including also the incurred delay, i.e., E[T ], required
to proceed with context delivery of high quality. We compare the expected
quality reward E[Y ] for both approaches (ODA / TDA) for certain values of
c, β and n.
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Fig. 3 (Left) Quality reward E[Y ] against probability β for analytical model and simu-
lations with different cost c and n = 30; (right) average delivery delay of the proposed
approach, i.e., E[T ], against cost c for different n values with β = 0.8.

Tables 2 and 3 show the average reward E[Y ] for both approaches against
cost per observation c and probability β with n ∈ {30, 50}, respectively. E[Y ]
quantifies the quality of context delivered when an approach stops at a stop-
ping time t accounting also the cumulative cost for observing t pieces of con-
text. ODA achieves always higher E[Y ] value than TDA for all parameters.
More interestingly, ODA is deemed appropriate for adopting for delay-tolerant
predictive analytics when context contains a high portion of problematic val-
ues, i.e., low β values, compared with the performance of TDA. We can observe
that for β = 0.1 and, especially, when the cost of observation is relatively high,
i.e., c = 0.8, ODA delivers context of (112,129)% more quality compared to
TDA in terms of quality reward with n = (30, 50). Moreover, as β increases
then ODA and TDA proceed with relatively high E[Y ]. This is due to the
fact that high β values refer to received context of high quality, thus, evi-
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Fig. 4 The NQI and BNQI against number of sources n for different cost c with (left)
β = 0.8 and (right) β = 0.1.

dently both approaches would deliver high quality context. However even in
this case, ODA outperforms TDA. When the cost of observation is relatively
high and the received context contains a low portion of problematic values,
ODA is 84% and 48% more efficient than TDA in terms of quality reward for
n = 30 and n = 50, respectively; see Tables 2 and 3.

Overall, ODA delivers high quality context to the System, thus, improving
the quality of predictive analytics, even when context contains, with a high
probability, problematic values and the cost per observation is not negligible.
This is attributed to the fact that ODA exploits the history of the observed
sequence of Mt and then decides on the optimal stopping time to deliver
context at the expense of a controlled (relatively low) delay.

Table 2 Average quality reward E[Y ] for ODA and TDA with n = 30

ODA TDA ODA TDA ODA TDA
β c = 0.1 c = 0.5 c = 0.8
0.1 5.15 -0.13 3.33 -7.94 2.82 -22.80
0.5 18.82 12.16 16.50 2.62 15.65 -8.69
0.8 26.59 22.37 24.84 19.79 24.21 13.81

Table 3 Average quality reward E[Y ] for ODA and TDA with n = 50

ODA TDA ODA TDA ODA TDA
β c = 0.1 c = 0.5 c = 0.8
0.1 7.98 0.23 5.76 -4.08 5.11 -17.15
0.5 30.36 17.85 27.57 13.89 26.57 5.94
0.8 43.76 36.05 41.55 33.36 40.69 27.84
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5.2 Comparative assessment

5.2.1 Experiment setup

We experiment with real contextual data from K = 16 chemical sensors ex-
posed to three gases of three chemical compounds at a certain concentra-
tion level [33],[34]. Each sensor detects three specific environmental contextual
parameters corresponding to Ethylene, Ammonia, and Toluene, respectively.
Each sensor k ∈ [K] measures a triplet sk = [xk1, xk2, xk3], where each di-
mension of sk corresponds to the three contextual parameters. The context is
then a n-dimensional vector with n = 3K = 48 dimensions at time instance
t, i.e., xt = (s1, s2, . . . , sK) and the dataset contains 13,910 48-dimensional
contextual vectors. We focus in the case where there are missing values for
each dimension of the context vector at time instance t. For experimentation,
we set the probability of a missing (problematic) value in a dimension with
p = 1 − β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, i.e., the probability of being a parameter
non-problematic at time instance t is β = 1− p.

We consider two scenarios. In the first scenario (Scenario 1), the System
processes the delivered context vector xt, which might include missing values.
The process of the System refers to a fusion operator over the contextual
values of the vector (described later). In the second scenario (Scenario 2),
the System before processing the context vector xt invokes a Missing Value
substitution Algorithm (MVA) for handling the missing values in xt. After
the invocation of the MVA, the System calls for a fusion operator over the
‘imputed’ contextual values. The process of the System over context x refers
to two fusion operators over the contextual data. For demonstration, we define
two vectorial fusion operators: favg(x) is associated with the mean value of
each chemical compound over all K sensors, and fmin(x) is associated with
the minimum value of each chemical compound over all K sensors, as follows:

favg(x) =

[
1

K

K∑
k=1

xkj

]
, j = 1, 2, 3 (5)

fmin(x) =

[
min
k∈[K]

{xkj}
]
, j = 1, 2, 3 (6)

Scenario 1. In this scenario, when a dimension xkj is missing, k ∈ [K], j =
1, 2, 3 then, evidently, the operators favg and fmin do not take into account
that dimension in the calculation of the mean or the minimum, respectively;
note, there is not MVA invocation in this scenario. We experiment with three
approaches (we repeat the ODA and TDA for convenience):

– The Optimal Delivery Approach (ODA), which observes Mt and delivers
xt when Mt > y. Then the System invokes the vectorial operators favg(xt)
(and fmin(xt)). Otherwise, the System takes the next observation, i.e., the
next incoming context vector.



18 Christos Anagnostopoulos

– The Immediate Delivery Approach (IDA), which delivers context xt at
each time instance t to the System. Then, the System invokes at each t the
vectorial operators favg(xt) (and fmin(xt)).

– The Threshold-based Delivery Approach (TDA) with threshold parameter
θ ∈ (0, n), which observes Mt and delivers xt when Mt > θ. Then the
System invokes the vectorial operators favg(xt) (and fmin(xt)). Otherwise,
the System waits for the next time instance to process the incoming vector.

The comparative assessment in Scenario 1 is to examine whether the ODA
compared with the delay of the TDA and the non-delay of the IDA results to
accurate fusion results. Specifically, if x′ti is the delivered context to the System
by an approach at some time instance ti within the i-th epoch, i = 1, . . . , N ,
and xt is the ground truth (actual) context at that time instance (i.e., without
missing values), then we define as mean fusion error for the favg(·) operator
as the root mean squared error of the vectorial fused vector, i.e.,

eavg =

(
1

N

N∑
i=1

‖ favg(xti)− favg(x′ti) ‖
2

)1/2

(7)

The fusion error emin for the fmin(·) operator is similarly defined and N is
the total number of epochs for each approach. Moreover, we have to include
the corresponding expected delay ωavg (and ωmin) of context delivery to the
System by an approach (ODA,TDA,IDA) to obtain a certain fusion error.
Evidently, the delay for the IDA is zero, since it immediately delivers context
to the System for fusion. The expected delay for both ODA and TDA is defined
as:

ω =
1

N

N∑
i=1

t∗i , (8)

where t∗i refers (i) to the optimal stopping time T for the i-th epoch in the
ODA, i.e., the first time instance at which Mti > y and (ii) to the threshold-
based stopping time for the i-th epoch in the TDA, i.e., the first time instance
at which Mti ≥ θ for a specific θ.

Scenario 2. In this scenario, when a dimension xkj is missing then its value
is filled-in (a.k.a. imputed) by the Exponential Smoothing MVA (ES-MVA)
[31] with smoothing factor a ∈ (0, 1), which is used in time-series contextual
data. Specifically, if the dimension xkj,t at time instance t is missing, which
corresponds to sensor k ∈ [K] and to the chemical compound j ∈ {1, 2, 3},
then the ES-MVA replaces it with an estimate ukj,t based on xkj,t−1 and the
trajectory of this dimension up to t− 1, that is:

ukj,t = axkj,t−1 + (1− a)ukj,t−1, (9)

with ukj,1 = xkj,0. The smoothed statistical estimate ukj,t for the correspond-
ing missing value xkj,t is a weighted average of the previous observation xkj,t−1
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and the previous smoothed statistical estimate ukj,t−1. In this scenario, the
three approaches ODA, TDA and IDA deliver the context xt to the System as
described in Scenario 1. Nonetheless, the System upon receiving the xt vector
it firstly involves the ES-MVA for imputation and then invoking the fusion
operators favg(xt) and fmin(xt) of the imputed vector xt. Moreover, the fu-
sion errors eavg and emin in this scenario is defined as in Scenario 1 by simply
involving the imputed contextual values.

5.2.2 Comparison evaluation

Tables 4 and 5 show the fusion errors eavg and emin for the favg and fmin oper-
ators, respectively, and the corresponding delay ω (shown within parenthesis)
with β ∈ {0.5, 0.7} using the approaches ODA, IDA, and TDA repeated for
N = 104 epochs. The results are produced with observation cost c = 1; simi-
lar results are obtain with other c values. The ODA achieves the lowest error
compared to IDA for all cases with a relatively small delay, i.e., number of
observations until the mechanism delivers context to the System. This indi-
cates the applicability of our approach for near real-time predictive analytics,
by achieving low fusion error compared with the IDA, which achieves 100%
higher fusion error by immediately delivering context. Moreover, we experi-
ment with different threshold values for the TDA, i.e., θ = ηn, with different
η ∈ {0.1, . . . , 0.9} percentage. Evidently, the lower the threshold, i.e., the TDA
stops at the first time instance the percentage of non-problematic values out
of n is over η, the sooner that mechanism delivers context to the System. As
shown in Tables 4 and 5, TDA achieves higher fusion error than ODA with rel-
atively higher delay. Specifically, with η ≤ 0.5, ODA outperforms TDA in both
error and delay. On the other hand, for η > 0.5, i.e., TDA considers stopping
when at least more than 50% of the contextual values are non-problematic,
it achieves lower fusion error compared to ODA. However, this comes at the
expense of a significantly high delay (indicatively % for η = 0.7). This high
delay is prohibitive for (near) real-time statistics analytics, especially in the
environmental monitoring, since significant events cannot be captured at the
early stages of a monitoring process, e.g., fire or flood detection. Evidently, as
β increases all approaches obtain relatively lower fusion error, since less prob-
lematic pieces of context are observed. Nonetheless, in this case, TDA achieves
extremely high delay for obtaining a low error. In both cases for all β values,
the proposed mechanism with significantly low delay achieves low fusion er-
ror (in both types of fusion operators). The IDA approach never outperforms
ODA in each case, while TDA for η > 0.5 attempts lower fusion error with one
or two orders of magnitude higher delay than that of ODA, thus, yielding it
inappropriate for real-time monitoring. It is worth noting that similar behavior
will be obtained with other fusion operators that take into consideration the
number of current contextual values, since the more non-problematic values
we receive the better the accuracy of the event detection. For instance fusion
operators over the current context xt could be higher order statistics over the
n current measurements, the top-K sources with respect to score functions
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over their measurements, the outliers of xt using the median absolute devi-
ation about the median [32], or a weighted sum over the current contextual
values.

Table 4 Scenario 1: Fusion error eavg and delay ω (in parenthesis).

β = 0.5 β = 0.7

η = θ
n

ODA IDA TDA ODA IDA TDA

0.1 80.88 (3.4) 161.96 161 (0) 52.8 (2) 109.5 109.5 (0)
0.3 160 (10) 106.3 (7)
0.5 95.7 (15) 94.5 (12)
0.7 12 (504) 14.3 (443)
0.9 10 (988) 9.5 (1099)

Table 5 Scenario 1: Fusion error emin and delay ω (in parenthesis).

β = 0.5 β = 0.7

η = θ
n

ODA IDA TDA ODA IDA TDA

0.1 621.2 (3.4) 1240 1240 (0) 439.7 806.9 806 (0)
0.3 1202 (10) 784 (7)
0.5 765 (15) 702 (15)
0.7 50 (504) 46 (443)
0.9 16 (988) 2 (1099)

In the case we adopt a MVA for missing values imputation before delivering
context to the System, we obtain analogous performance of all mechanisms.
Tables 6 and 7 show the impact of the adoption of the ES-MVA on the fusion
errors for both fusion operators using all approaches. Obviously, by adopting a
MVA, we obtain lower fusion errors since the missing values are replaced with
the most plausible enough thus, statistically reducing the error. Even in this
case, ODA outperforms IDA significantly. This is due to the fact that the ODA
takes into account all information (i.e., the series Mt) before proceeding with
an optimal decision whether to stop at time t or continue and take the next
observation. Recall that the highest possible expected context quality reward is
obtained by the stopping rule stated in Theorem 2. This justifies the capability
of our mechanism to deliver context of high quality with relatively low delay.
The TDA assumes low fusion error but with very high delay compared with
the ODA and, obviously, IDA. Overall, in both scenarios (by either adopting
MVA algorithms or not) the ODA is deemed as an appropriate mechanism
for near real-time analytics assuring high quality of delivered context, thus,
improving the quality of MVAs inducing a tolerable delay.

6 Conclusions

We introduce a quality-optimized mechanism for delaying context delivery to
predictive analytics engines in hope of receiving context of higher quality in



Quality-Optimized Predictive Analytics 21

Table 6 Scenario 2: Fusion error eavg and delay ω (in parenthesis).

β = 0.5 β = 0.7

η = θ
n

ODA IDA TDA ODA IDA TDA

0.1 61.02 (3.4) 111.55 111 (0) 32.8 (2) 99.6 99 (0)
0.3 102 (10) 92.4 (7)
0.5 88.3 (15) 74.4 (12)
0.7 9 (504) 11.9 (443)
0.9 7 (988) 8.1 (1099)

Table 7 Scenario 2: Fusion error emin and delay ω (in parenthesis).

β = 0.5 β = 0.7

η = θ
n

ODA IDA TDA ODA IDA TDA

0.1 580 (3.4) 1224 1224 (0) 377.5 838.6 838 (0)
0.3 1212 (10) 824 (7)
0.5 715 (15) 587.6 (15)
0.7 46.7 (504) 47.6 (443)
0.9 17.8 (988) 2.3 (1099)

data streams, thus eliminating possible biases in knowledge extraction and
in decision making. The idea behind this mechanism is to avoid immediately
delivering context by introducing a certain controlled delay. The proposed
mechanism, based on the principles of optimal stopping theory, proceeds with
an optimal stopping rule for delivering context taking into consideration the
observation cost and the statistics of the quality indicators seen so far. An an-
alytical stochastic optimization model is proposed and, through experimental
evaluation and comparative assessment with a threshold-based and immediate
delivery approach, our mechanism is deemed appropriate for adoption espe-
cially when the received context is (stochastically) of low quality and the ob-
servation cost is not negligible. In our future agenda we study the analysis and
development of a mechanism in which the decision time for context delivery
is contained within a finite time interval which is application specific.
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