10,465 research outputs found

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features

    Hierarchical Bayesian auto-regressive models for large space time data with applications to ozone concentration modelling

    No full text
    Increasingly large volumes of space-time data are collected everywhere by mobile computing applications, and in many of these cases temporal data are obtained by registering events, for example telecommunication or web traffic data. Having both the spatial and temporal dimensions adds substantial complexity to data analysis and inference tasks. The computational complexity increases rapidly for fitting Bayesian hierarchical models, as such a task involves repeated inversion of large matrices. The primary focus of this paper is on developing space-time auto-regressive models under the hierarchical Bayesian setup. To handle large data sets, a recently developed Gaussian predictive process approximation method (Banerjee et al. [1]) is extended to include auto-regressive terms of latent space-time processes. Specifically, a space-time auto-regressive process, supported on a set of a smaller number of knot locations, is spatially interpolated to approximate the original space-time process. The resulting model is specified within a hierarchical Bayesian framework and Markov chain Monte Carlo techniques are used to make inference. The proposed model is applied for analysing the daily maximum 8-hour average ground level ozone concentration data from 1997 to 2006 from a large study region in the eastern United States. The developed methods allow accurate spatial prediction of a temporally aggregated ozone summary, known as the primary ozone standard, along with its uncertainty, at any unmonitored location during the study period. Trends in spatial patterns of many features of the posterior predictive distribution of the primary standard, such as the probability of non-compliance with respect to the standard, are obtained and illustrated

    Neural Networks for Complex Data

    Full text link
    Artificial neural networks are simple and efficient machine learning tools. Defined originally in the traditional setting of simple vector data, neural network models have evolved to address more and more difficulties of complex real world problems, ranging from time evolving data to sophisticated data structures such as graphs and functions. This paper summarizes advances on those themes from the last decade, with a focus on results obtained by members of the SAMM team of Universit\'e Paris
    corecore