5,152 research outputs found

    Organizing Multidisciplinary Care for Children with Neuromuscular Diseases

    Get PDF
    The Academic Medical Center (AMC) in Amsterdam, The Netherlands, recently opened the `Children's Muscle Center Amsterdam' (CMCA). The CMCA diagnoses and treats children with neuromuscular diseases. These patients require care from a variety of clinicians. Through the establishment of the CMCA, children and their parents will generally visit the hospital only once a year, while previously they visited on average six times a year. This is a major improvement, because the hospital visits are both physically and psychologically demanding for the patients. This article describes how quantitative modelling supports the design and operations of the CMCA. First, an integer linear program is presented that selects which patients to invite for a treatment day and schedules the required combination of consultations, examinations and treatments on one day. Second, the integer linear program is used as input to a simulation to study to estimate the capacity of the CMCA, expressed in the distribution of the number patients that can be seen on one diagnosis day. Finally, a queueing model is formulated to predict the access time distributions based upon the simulation outcomes under various demand scenarios

    Strategies for dynamic appointment making by container terminals

    Get PDF
    We consider a container terminal that has to make appointments with barges dynamically, in real-time, and partly automatic. The challenge for the terminal is to make appointments with only limited knowledge about future arriving barges, and in the view of uncertainty and disturbances, such as uncertain arrival and handling times, as well as cancellations and no-shows. We illustrate this problem using an innovative implementation project which is currently running in the Port of Rotterdam. This project aims to align barge rotations and terminal quay schedules by means of a multi-agent system. In this\ud paper, we take the perspective of a single terminal that will participate in this planning system, and focus on the decision making capabilities of its intelligent agent. We focus on the question how the terminal operator can optimize, on an operational level, the utilization of its quay resources, while making reliable appointments with barges, i.e., with a guaranteed departure time. We explore two approaches: (i) an analytical approach based on the value of having certain intervals within the schedule and (ii) an approach based on sources of exibility that are naturally available to the terminal. We use simulation to get insight in the benefits of these approaches. We conclude that a major increase in utilization degree could be achieved only by deploying the sources of exibility, without harming the waiting time of barges too much

    Organizing multidisciplinary care for children with neuromuscular diseases at the Academic Medical Center, Amsterdam:CASE STUDY

    Get PDF
    The Academic Medical Center (AMC) in Amsterdam, The Netherlands, recently opened the ā€˜Childrenā€™s Muscle Center Amsterdamā€™ (CMCA). The CMCA diagnoses and treats children with neuromuscular diseases. The patients with such diseases require care from a variety of clinicians. Through the establishment of the CMCA, children and their parents will generally visit the hospital only once a year, while previously they used to visit on average six times a year. This is a major improvement, because the hospital visits are both physically and psychologically demanding for the patients. This paper describes how quantitative modelling supports the design and operations of the CMCA. First, an integer linear program is presented that selects which patients are to be invited for a treatment day and schedules the required combination of consultations, examinations and treatments on one day. Second, the integer linear program is used as input to a simulation study to estimate the capacity of the CMCA, expressed in terms of the distribution of the number patients that can be seen on one diagnosis day. Finally, a queueing model is formulated to predict the access time distributions based upon the simulation outcomes under various demand scenarios. Its contribution on the case under study is twofold. First, we design highly constrained appointment schedules for multiple patients that require service from multiple disciplinesā€™ resources. Second, we study the effect of the trade-offs between scheduling constraints and access times. As such, the contribution of this case study paper is that it illustrates the value of applying Operations Research techniques in complex healthcare settings, by designing context-specific combinations of mathematical models, thereby improving delivery of the highly-constrained multidisciplinary care

    Designing cyclic appointment schedules for outpatient clinics with scheduled and unscheduled patient arrivals

    Get PDF
    We present a methodology to design appointment systems for outpatient clinics and diagnostic facilities that offer both walk-in and scheduled service. The developed blueprint for the appointment schedule prescribes the number of appointments to plan per day and the moment on the day to schedule the appointments. The method consists of two models that are linked by an algorithm; one for the day process that governs scheduled and unscheduled arrivals on the day and one for the access process of scheduled arrivals. Appointment schedules that balance the waiting time at the facility for unscheduled patients and the access time for scheduled patients, are calculated iteratively using the outcomes of the two models. The method is of general nature and can therefore also be applied to scheduling problems in other sectors than health care

    Modeling a healthcare system as a queueing network:The case of a Belgian hospital.

    Get PDF
    The performance of health care systems in terms of patient flow times and utilization of critical resources can be assessed through queueing and simulation models. We model the orthopaedic department of the Middelheim hospital (Antwerpen, Belgium) focusing on the impact of outages (preemptive and nonpreemptive outages) on the effective utilization of resources and on the flowtime of patients. Several queueing network solution procedures are developed such as the decomposition and Brownian motion approaches. Simulation is used as a validation tool. We present new approaches to model outages. The model offers a valuable tool to study the trade-off between the capacity structure, sources of variability and patient flow times.Belgium; Brownian motion; Capacity management; Decomposition; Health care; Healthcare; Impact; Model; Models; Performance; Performance measurement; Queueing; Queueing theory; Simulation; Stochastic processes; Structure; Studies; Systems; Time; Tool; Validation; Variability;

    Examining The Influence Of Dependent Demand Arrivals On Patient Scheduling

    Get PDF
    This research examines the influence of batch appointments on patient scheduling systems. Batch appointments are characterized by multiple patients within a family desiring appointments within the same time frame
    • ā€¦
    corecore