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Abstract
The Academic Medical Center (AMC) in Amsterdam, The Netherlands, recently

opened the ‘Children’s Muscle Center Amsterdam’ (CMCA). The CMCA diagnoses

and treats children with neuromuscular diseases. The patients with such diseases
require care from a variety of clinicians. Through the establishment of the CMCA,

children and their parents will generally visit the hospital only once a year, while

previously they used to visit on average six times a year. This is a major
improvement, because the hospital visits are both physically and psychologically

demanding for the patients. This paper describes how quantitative modelling

supports the design and operations of the CMCA. First, an integer linear program is

presented that selects which patients are to be invited for a treatment day and
schedules the required combination of consultations, examinations and

treatments on one day. Second, the integer linear program is used as input to a

simulation study to estimate the capacity of the CMCA, expressed in terms of the
distribution of the number patients that can be seen on one diagnosis day. Finally,

a queueing model is formulated to predict the access time distributions based

upon the simulation outcomes under various demand scenarios. Its contribution
on the case under study is twofold. First, we design highly constrained

appointment schedules for multiple patients that require service from multiple

disciplines’ resources. Second, we study the effect of the trade-offs between
scheduling constraints and access times. As such, the contribution of this case

study paper is that it illustrates the value of applying Operations Research

techniques in complex healthcare settings, by designing context-specific

combinations of mathematical models, thereby improving delivery of the
highly-constrained multidisciplinary care.
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Introduction
The Academic Medical Center (AMC) Amsterdam, The Netherlands,
recently opened a center for children with neuromuscular diseases.
Neuromuscular diseases is the generic term for a broad set of disorders
which impair the functioning of the muscles via muscle or nerve
pathology. Most of the diseases are progressive in time, sometimes leading
to an early death of the patient (European Neuromuscular Centre, 2012).
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Most neuromuscular diseases have no cure, so the goal of
the treatment is to reduce symptoms, and increase both
the mobility and life expectancy (Medline Plus, 2012).
Examples of neuromuscular diseases are the diseases of
Duchenne, Becker and Charcot Marie Tooth (Vereniging
Spierziekten Nederland, 2011). In this paper, we present
the quantitative modelling that supports the AMC in the
design and operations of the CMCA.
Children with neuromuscular diseases typically need

care from various physicians and therapists: a rehabilita-
tion physician, a neurologist, a clinical geneticist, a
cardiologist and a pneumonologist. In addition, psychol-
ogists, dieticians and even cardiac surgeons may be
required. Traditionally, these patients (and their parents)
are forced to make separate visits to these various
physicians, possibly working in different outpatient
clinics, which imposes several risks and challenges. A
lack of coordination between the disciplines may result
in under- or overtreatment, treatments may be performed
in a non-optimal order, or certain aspects of the disease
may be overlooked. However, the necessary accurate
coordination is a challenging task because different
disciplines are accommodated at different locations
within the hospital, and often have different routines
and conflicting schedules. This article illustrates the
potential of applying operations research techniques in
supporting the realization of efficient and patient-cen-
tred care in multidisciplinary-focused care facilities.
In order to meet the challenge and improve the care

quality, the AMC has decided to cluster the expertise of
the involved care providers in the ‘Children’s Muscle
Center Amsterdam’ (CMCA). Regularly, a treatment day
is organized on which the required disciplines come
together to see multiple patients. Physicians discuss the
condition of the different patients, so that diagnoses are
settled earlier and treatments are better customized. With
the opening of the CMCA, children and their parents will
generally visit the hospital only once a year, while
previously they used to visit on average six times a year.
This is a major improvement, because the hospital visits
are both physically and psychologically demanding for
the patients. Also, the CMCA will take away the great
responsibility and burden from the parents: to gather all
relevant information from the different hospital visits
and to schedule the right appointments at the right time.
Consequently, the CMCA will simultaneously increase
quality of care and patient-centredness.
We address the following challenges encountered at

the AMC in making the centralized care at CMCA a
reality. (1) All physicians should cooperate and reserve
time for the treatment days in their already busy sched-
ules. (2) For each treatment, day patients have to be
selected and scheduled in an optimal way. Since the
schedules are heavily constrained, construction by hand
is very time consuming and does not guarantee the best
solution. (3) Due to the small size of the patient group,
the treatment days are not often organized, and due to
the many constraints, only a few patients can be

scheduled in one treatment day. Consequently, long
access times may arise (i.e. the time between the day of
an appointment request and the actual appointment
date).
We contribute to the logistic questions on two levels:

– Day scheduling method First, we present a method that
solves the task of scheduling the required consulta-
tions, diagnostics and treatments on one day. To this
end, we develop and solve an Integer Linear Program
(ILP) that simultaneously selects which patients are to
be invited for a particular treatment day, and generates
an optimal day schedule that complies with all rele-
vant restrictions and preferences.

– Access time evaluation Second, we evaluate the access
times for new patients, using a queueing model. As
input, this model uses probability distributions of the
number of patients that can be invited to a treatment
day. This input is obtained by simulations: we repeat-
edly generate sets of patients using historical data, and
then apply our developed day scheduling algorithm.

The research reported in this article has been conducted
in close cooperation with the neuromuscular disease care
experts. Since the CMCA has started very recently,
demand predictions are uncertain: estimations run from
20 to 50 new patients per year. Therefore, we considered
various demand scenarios. We have analysed how the
constraints proposed by the hospital (such as the avail-
ability of the specialists) affect the access times, detected
the bottlenecks, and proposed the improvements. The
outcomes of this study are used to advise the AMC on
how frequently the treatment days should be organized,
and how to resolve the bottlenecks in the day schedules.
The approach can be applied in a general setting of
multidisciplinary care, faced with highly constraint
scheduling and service level guarantees for access times.
This paper addresses three prominent open challenges

in the healthcare appointment scheduling literature, as
stated, for example, in Gupta & Denton (2008) and
Hulshof et al (2012): (1) planning coordinated packages
of care for patients needing treatment from several health
services; (2) scheduling in highly constrained situations,
and (3) formulating models that link day scheduling with
access time calculations. Our case study shows that in
complex multidisciplinary settings, a context-specific
approach is essential, and that it is important to
acknowledge the interrelation between decisions made
with respect to day schedules and their influence on
access times.
This paper is organized as follows. The ‘‘Literature and

Contribution’’ section provides an overview of the related
literature. The ‘‘Case study’’ section describes the charac-
teristics of the setting of the case study. The ‘‘Appoint-
ment scheduling’’ section presents the ILP model for the
planning of a treatment day. In this section, planning
algorithm is applied to data of the targeted patient group,
and the results for these patients are presented. Based on
our results of this planning algorithm, an access time
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model is derived in ‘‘Access time analysis’’ section, and
the numerical results are given for the AMC case. The
paper ends with a detailed discussion on the merits and
limitations of the proposed ILP-based methods, and the
implications and suggestions for providing the high-
quality health care of the patients in the concluding
‘‘Discussion’’ section.

Literature and contribution
There is a vast literature on designing appointment
systems in healthcare. Two comprehensive surveys are
provided in Cayirli & Veral (2003) and Gupta & Denton
(2008). Appointment systems can be regarded as a
combination of two distinct queueing systems. The first
queueing system concerns customers making an appoint-
ment and waiting until the day the appointment takes
place (the access process). The second queueing system
concerns the process of a service session during a
particular day (the day process).
The literature on appointment scheduling has mainly

focused on the day process; specifically, on scheduling
single appointments (i.e. each patient needs just one
consultation) on a particular day for an individual service
provider (Cayirli & Veral, 2003). The objectives that are
typically considered are minimizing customer waiting
time, maximizing resource utilization, and minimizing
resource idle time. The influence of the designed sched-
ules on patient access times is typically neglected.
Scheduling multiple appointments at once for a single

resource for a planning horizon of one day or one week is
addressed in Chien et al (2008, 2009) and Podgorelec &
Kokol (1997). These references study the scheduling of a
particular day for a given set of patients with given sets of
physical therapy treatments. Chien et al (2008, 2009)
formulate this problem as a hybrid shop scheduling
problem, and solve it by developing a genetic algo-
rithm (Chien et al, 2008), combined with data mining
techniques in later work (Chien et al, 2009). Podgorelec &
Kokol (1997) develop a scheduling algorithm based on
genetic algorithms and machine learning.
ILP approaches for highly constrainedmonodisciplinary

treatment planning consisting of multiple appointments
are employed in Conforti et al (2008, 2011), Ogulata et al
(2008) and Turkcan et al (2012) for radiotherapy and
chemotherapy treatments. For these patients treatments
have to be scheduled during a given number of weeks,
strictly taking into account the required rest periods.
Most of the literature on healthcare scheduling,

including the aforementioned articles, does not take
access times into account. Conforti et al (2011) make a
step in this direction by developing an ILP for radiother-
apy treatment planning, that has the objective to max-
imize the number of patients from the waiting list that
receive an appointment. As, such they indirectly mini-
mize access times. Our contribution compared to Con-
forti et al (2011) is that we provide an explicit evaluation
of the access times, using the ILP results as an input to the

queueing system that models the access process. With
this approach, we are able to quantify consequences of
decisions made on the level of the day schedules, on the
access time in the long run.
Our problem under study shows similarities to the

resource-constrained project scheduling problem [see De-
meulemeester & Herroelen (2006)], as jobs (patients),
precedence constraints, process times and resource lim-
itations are involved. Examples of applications of
resource-constrained project scheduling to healthcare
settings can be found in Naber & Kolisch (2014) and
Roland et al (2010). We will model the problem under
study with an ILP, by which the planning problem can be
modelled appropriately, and multiple objectives can be
weighted rationally. Applying resource-constrained pro-
ject scheduling problem to our problem under study is
not straightforward, but it might have the potential to
provide a more efficient technique than we present in
this paper. This is an interesting direction for further
research.
On the other end of the spectrum, models that do

evaluate access times for outpatient settings typically do
not consider day schedules. For example, continuous-
time queueing models for access times have been studied
in Green & Soares (2007) and Green et al (2006), under
various assumptions on the access process, including
time-dependent demand (Green et al 2006). The length
of hospital waiting lists were studied in Worthington
(1987), and further, for example, in Goddard & Tavakoli
(2008). In order to preserve the discrete-time
nature, Kortbeek et al (2014) presents a slotted queueing
model in discrete time that is solved by a generating
function approach based upon (Bruneel & Wuyts, 1994).
In the current paper, we evaluate access times using

discrete time queueing model with batch service. Queue-
ing systems with batch service were first considered by
Bailey (1954), motivated, as in this paper, by evaluation
of access times for out-patients in hospitals. Other
applications mentioned in the literature are in transport,
control of traffic flows, and manufacturing. There is a vast
literature on the analysis and numerical evaluation of
queues with batch service, see e.g. Chaudhry et al (1987),
Gold & Tran-Gia (1993) and Neuts (1967, 1979). In this
paper, we approximate the queueing process with a finite
Markov chain and use the renewal theory to derive
stationary waiting times. In the literature, we could not
find results on waiting times in the type of queueing
system that we consider, therefore, we also provide the
analysis. We believe that the proposed model is natural
and useful for the integral analysis of day schedules and
access times.
Summarizing, our contribution is twofold. First, we

design appointment schedules for multiple patients that
require service from multiple disciplines/resources. The day
schedules are highly constrained and we integrate the
patient selection decision given a certain waiting list.
Second, we study the effect of produced schedules on the
access times of the patients. The trade-offs between
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scheduling constraints and access times, to the best of
our knowledge, have not been addressed before. Our
quantitative evaluations of this trade-off resulted in
recommendations that have been adopted at the AMC.

Case study
At the CMCA children are treated up to eighteen years
old, who either already have been diagnosed with a
neuromuscular disease (follow-up patients), or are sus-
pected of having one (new patients). The CMCA does not
invite follow-up and new patients on the same day,
because a different team of physicians is required.
Therefore, ‘diagnosis days’ are organized for patients
suspected of having a neuromuscular disease, and ‘fol-
low-up days’ for patients who have already been diag-
nosed. A summary of the patient flow is displayed in
Figure 1.
Preconsultation When a physician suspects a neuromus-

cular disease, the patient and the parents are first asked to
fill out a questionnaire at home, which is then assessed
by the CMCA. If the questionnaire does not support the
suspicion of a neuromuscular disease, the patient will not
be invited to the CMCA.
Diagnosis day If a patient is eligible for a diagnosis day, a

set of required consultations and examinations is deter-
mined during a meeting between the ‘core members’ of
the multidisciplinary treatment team. The core members
are the physicians who are together responsible for the
patient’s treatment. They will all see the patient during
the diagnosis day. The team is completed by a nurse
practitioner who provides administrative support to both
physicians and patients. For diagnosis days the core of
the team is formed by a paediatric neurologist, a clinical
geneticist, and the nurse practitioner.
Next, the patient is scheduled to come to the AMC for a

diagnosis day. On this day, there will first be an intake
meeting between the patient and the nurse practitioner.
Then, the prescribed consultations and examinations will

take place. During the afternoon, a Multidisciplinary
Team Meeting (MTM) is scheduled in which the out-
comes of the consultations and examinations are dis-
cussed. In the MTM, the diagnosis is settled, and a care
plan is designed. After the MTM, the neurologist shares
the conclusions with the patient. During the day the
nurse practitioner is present to act as a host for the
patient and to guide the patient through the different
examinations. The day finalizes with a meeting between
the patient, parents, and the nurse practitioner, to answer
remaining questions and to explain the further care
pathway. If it is not possible to settle the diagnosis on the
same day (which is exceptional), additional examinations
are scheduled for a new visit and the care plan is
formulated outside the scope of a diagnosis day of the
CMCA.
Follow-up programme. If the conclusion of the diagno-

sis day is that the patient has a neuromuscular disease,
he/she will continue to the follow-up programme.
During this programme, the physicians monitor the
health of the patient and give advice on how to reduce
and handle the symptoms. Most of the check-ups have
to be performed annually, therefore the patient will visit
a follow-up day once a year. Here, the core of the team
consists of a paediatric neurologist, a paediatrician, a
rehabilitation physician and the nurse practitioner.
Also, the set of required appointments is different than
for the diagnosis day and depends on the type and
severity of the disease from which the patient suffers.
The set-up of a follow-up day is as follows: an intake
with the nurse practitioner, examinations, a first MTM,
consultations, a second MTM, a feedback consultation
by a rehabilitation physician, and a final consultation
with a nurse practitioner. When the patient turns 18, he
will proceed to the adults track.

Day schedule
A month prior to a diagnosis day, the patients are
selected who are preferably invited for the diagnosis day
of the next month. If there are at least two candidate
patients, a diagnosis day is scheduled. Otherwise, the
hospital considers it to be inefficient. A feasible day
schedule has to be composed to assess howmany patients
can actually be invited. The schedule of a treatment day
is highly constrained: for example some physicians are
only available on specific times of the day, for some
consultations several physicians have to be present,
appointment precedence constraints have to be satisfied,
and all results of diagnostic tests have to be available
before the MTM can start.
Based upon the predominant suspected disease,

patients are assigned to one of four patient types. For
each type, the percentage of patients that require a
certain appointment is listed in Table 1. These numbers
are based on data from the patients who have been
treated before outside the CMCA augmented with esti-
mations of the involved physicians.Figure 1 Patient flow diagram.
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The core team members subdivide for each patient the
list of required consultations and examinations in ‘nec-
essary’ and ‘desirable’ appointments. A patient is invited
to a diagnosis day if all necessary appointment can be
scheduled. Further, the trade-off has to be addressed
between skipping some of the desirable (but not neces-
sary) appointments in order to invite more patients, or
keeping all appointments and inviting less patients.
Clearly, the latter option will result in longer access
times. In ‘‘Appointment scheduling’’ section, an integer
linear program is presented that simultaneously
addresses: (1) rational patient selection in conjunction
with the appointments to be executed, and (2) the
creation of a day schedule. The resulting access times
are analysed in ‘‘Access time analysis’’ section.

Access times
The next concern at the CMCA is the access times for
diagnostic patients. We note that for follow-up patients
the access times are no major issue because they need to
revisit the CMCA between 12 and 15 months after their
last treatment day. Then, follow-up days are well pre-
dictable and can be always scheduled within the required
time frame.
The access time of a diagnostic patient is counted as the

number of days between the date when a completed
questionnaire is received at the hospital, and the date of
the patient’s visit. The timeline between these two dates
is illustrated in Figure 2. The AMC strives for a maximum
access time of seven weeks for diagnosis days, which is
quite ambitious because initially the time for a diagnosis
day was reserved only once per month. Due to the variety
in patient types, the complexity of the set of scheduling
constraints, and diverging availability of the different
care providers, the number of patients that can be invited
for each diagnosis day cannot be easily predicted.
In ‘‘Access time analysis’’ section, a queueing model is

presented and the access time distribution for diagnostic
patients is derived, based upon the probability distribu-
tion of the number of patients that can be seen on a
particular diagnosis day. We provide recommendations
on the desired frequency of the diagnosis days so that the
access times do not exceed the prescribed norms.

Appointment scheduling
In this section, a mathematical model is formulated that
has the purpose to decide which patients are invited to
visit the center for the next treatment day (both

diagnosis and follow-up) and to compute an optimal
schedule for this day. We first give an overview of the
properties of the model. Next, we describe our experi-
mental setup, and finally, present the results for diagnosis
days. For clarity of presentation, the detailed mathemat-
ical formulation of the model is presented in the
appendix. The model was developed in close cooperation
with the CMCA healthcare professionals. Several versions
of the model were designed and tested. Each time, the
formulation and the inclusion or exclusion of specific
constraints and objectives were discussed based upon the
outcomes on various test problems.

Model formulation
We formulate the day scheduling problem as an Integer
Linear Program (ILP). In our model, a treatment day is
divided in time slots of equal length. The decisions to be
made are twofold: which patient gets which appointment
at what time slot, and with which types of resource(s)
(the resource(s) can be staff members and/or equipment).
Thus, the decision variables are as follows:

zj;p;s;t ¼
1 if patient j has an appointment with resource s

for procedure p starting at time slot t,

0 otherwise.

8
><

>:

ð1Þ

We say that a patient has a complete visit if all his/her
appointments are scheduled (both the necessary and
desirable appointments, recall from ‘‘Case study’’ sec-
tion). If some of the desirable appointments are omitted,
we say that a patient has a partial visit. We are interested
in aspects such as which patients have a complete visit,
which have a partial visit, and at what time they have
which type of appointment. The formal description of
these variables can be found in Table 5, see Appendix A.
The constraints and objectives will be described in the
next subsections, while the mathematical formulation is
given in Appendix A.

Constraints
We distinguish several types of constraints:

Patient selection A patient has most of his/her appoint-
ments, all of them, or none. The visit of such a patient is
thus a complete visit, a partial visit, or the patient is not
scheduled. The amount of appointments that are
allowed to be omitted is patient specific. At least two
patients must be scheduled on a treatment day; other-
wise, the treatment day is cancelled. For reasons of
fairness, patients are scheduled according to the first-
come-first-served (FCFS) discipline. This implies that
the decision on which patients are invited is equivalent
to the decision on how many patients are invited from
the beginning of the queue.
Basic constraints A patient gets each treatment at most
once, a treatment is carried out by a resource that has

Events: D Q D,N D,S D, V

Time: 0-1 month x months 1 month

Figure 2 Timeline of patient access time to diagnosis day

(Legend: D diagnosis day, Q questionnaire received, N not yet

scheduled because of the waiting list, S scheduled for next

treatment day, V visit takes place).
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the necessary qualifications, and a resource can only be
scheduled at one place at a time and should be
available.
Precedence constraints Some treatments have to be per-
formed before others; there is a minimum amount of
time between the starting times of some combinations
of treatments.
CMCA-specific appointment constraints Some of the
appointments of a patient can take place simultane-
ously. For example, an orthopaedist and physiothera-
pist can treat one patient at the same time. A patient
needs time to rest; therefore, at least half an hour per
three hours must be free from appointments. Some
appointments are obligatory. If these are not scheduled,
the patient cannot be scheduled.
Patient-specific constraints A patient cannot get more
appointments than he/she can physically handle in a
day. Therefore, sometimes appointments of a patient
have to be spread over several days. This number of days
is given per patient. However, an appropriate fraction of
total appointment time should be scheduled on the first
treatment day in order to avoid scheduling problems in
future.
Multidisciplinairy Team Meeting constraints The MTM is
scheduled as a series of appointments, one per patient,
in consecutive time slots, to make it just one meeting.
All core team members should be present at the MTM.
The starting time of the MTM is flexible, sometimes
physicians prefer that the MTM starts at a fixed time.
Defining constraints This last set of constraints is required
for obtaining a correct mathematical formulation. The
defining constraints determine the starting and the end
times of the patients and staff members, and produce
the indicators of whether or not a patient has an
appointment at a certain time slot.

Objectives
The following objectives have been formulated, in
descending order of priority:

1. Maximize the number of patients that have a complete
visit

2. Maximize the number of patients that have a partial
visit

3. Maximize the treatment time of all scheduled patients
4. Minimize the idle time in the schedules of the staff
5. Minimize the idle time in the schedules of the patients

The objective of the ILP is to maximize the sum of the
weighted rewards on these objectives. In the objective
function (see Eq. (33) in Appendix A), objectives 1, 2, 3,
4 and 5 are, respectively, rewarded by weight factors
a; b; c; d, and �. One may observe that the objective
function contains multiple goals that are possibly in
conflict. By varying the weight factors in the objective
function, the relative importance of the various goals can
be specified.
The calibration of weight factors is done in close

cooperation with the care professionals. Consider, for
example, the first and second objectives. Assume that one
patient with a full visit is as important as two patients
with a partial visit. As the visit of a patient is a binary
variable, this leads to a ¼ 2b. The other objectives are
measured in the number of time slots: they have signif-
icantly smaller values. This is compensated by appropri-
ate scaling of the weight factors.

Experimental setup
The ILP is implemented using the program AIMMS. The
solver employed is Cplex 12.2, using the branch and
bound technique. All input parameters of the ILP are set

Table 2 Resource availabilities on a diagnosis day
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00

9:
00
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:0
0
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0
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Rehabilitation physician

Physiotherapist
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Muscle ultrasound

MRI
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according to the AMC data. Table 2 displays the avail-
ability of all resources during a diagnosis day. For brevity,
we do not include other data such as appointments
precedence and qualifications of the staff to carry out the
procedures. Table 3 lists the values used for weight
factors. To determine these values, we let the CMCA
clinicians score the relative importance of objective on a
0–10 scale. As the objectives are not measured on the
same scale, we applied normalization to each weight
factor. The normalization factors, multiplied by the
relative importance, resulted, after several calibration
runs, in the listed weight factor values. In addition, a test
set of 5900 patients was constructed at random, based on
the data given in Table 1.
Under the given constraints and data, the maximum

number of patients that fits in a diagnosis day is five. This
can be seen as follows. All patients require 45-min
appointment with the clinical geneticist, 15 min in the
MTM and 15 min in evaluation (see Table 1). The MTM
and the evaluation take place after all other appoint-
ments. As all patients need these appointments and only
one staff member is available, this yields 75 min per
patient. Now consider the availability of the clinical
geneticist in Table 2. These appointments can only start
at 10:30 and the last appointments should finish the
latest at 17:30. Thus, at most b7 � 60=75c ¼ b5:6c ¼ 5
patients can visit a diagnosis day.
A run is stopped as soon as the gap between the LP-

bound and the best solution so far is less than 1%, i.e.
when a nearly optimal solution has been found. In all
cases, the first four objectives have found their optimal
values by then, the fifth not necessarily, though. The ILP
when run with five patients has 9000–10000 constraints
and 3500–4000 variables. The solution time in most cases
ranges from seconds to minutes. In some exceptional
cases, this can increase to hours. Analysis of these cases
showed that the patient set was selected within a few
minutes, and the solver keeps searching for the optimal
solution thatminimizes the idle time of staff and patients.

Computed schedules
As an illustration of a resulting day schedule, the result
for an exemplary schedule of a diagnosis day is displayed
in Figure 3. Overall, several bottlenecks have been iden-
tified in the scheduling of diagnosis days. The following
issues restrict the capacity of the CMCA, and need
consideration when the CMCA desires to expand:

– Each patient has to visit the clinical geneticist for 45
min. However, this physician is available only from
10:30 h. These consultations have to take place before
the examinations. Since a fifth patient can visit the
clinical geneticist at the earliest at 13:30 h, just a short
time is left for the examinations.

– The results of the blood examination have to be
known before the MTM starts. However, obtaining
these results takes two hours, and the blood examina-
tion cannot be done before the consultation with the
clinical geneticist. Therefore, at the most, three
patients only can have a blood examination, regardless
of their other appointments.

– Each patient has two appointments after the MTM,
one with the neurologist, and one with the nurse
practitioner. In combination with the growing length
of the MTM when there are more patients, this results
in less time for consultations and examinations before
the MTM.

– Half of the patients with a neurological disease need to
have an EMG examination. The examination takesmore
than an hour, and the outpatient clinic is closed during
the lunch time (12:00–13:00 h). Therefore, at the most,
two patients can have this examination on a single day.
When there are five patients on one diagnosis day, just
one patient can take the EMG examination, regardless of
the other appointments needed.

– As not all patients have the physical ability to spend a
full day at the hospital, it should be considered to
divide the required services for the patient between
multiple days. This is part of the model given in
Appendix A. For each patient, a maximum of appoint-
ments or appointment time can then be given to
balance the load for a patient. The hospital, however,
did not adopt this suggestion, and therefore, it is left
out of the results.

Access time analysis
In this section, we study the access times of diagnostic
patients. Recall that the access time is defined as the time
span from returning the questionnaire until being pre-
sent at a diagnosis day. First, we analyse the capacity of a
diagnosis day of the CMCA by simulation. Then, a
queueing model is formulated to evaluate access time
distribution. Finally, we present numerical results on
various demand scenarios.

Number of scheduled patients per diagnosis day
The number of patients that can be scheduled in one
diagnosis day is a defining determinant for access times.
However, due to the complexity of the scheduling
problem, this number cannot be directly modelled or
predicted; therefore, a simulation study has been per-
formed to determine its distribution. For consecutive
diagnosis days, the first patients on the generated test list
of 5900 patients were selected, and an optimal schedule
was constructed. When a patient was scheduled, he/she
was deleted from the list.

Table 3 The weight factors for the objective function

Objective Weight factor Importance Value

1 a 10 100

2 b 8 50

3 c 10 2

4 d 6 20

5 � 5 2
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Table 4 shows the distribution of the number of patient
visits scheduled, given the waiting list size. Observe that,
at the most, five patients are invited, and when the
waiting list consists of two or three patients, all patients
are invited. If two patients are scheduled, both have a
complete visit. If three or more patients are scheduled,
then in almost all cases (99%), three patients have a
complete visit and the others have a partial visit;
otherwise, two patients have a complete visit and the
others have a partial visit.
The simulation results have shown that mainly the

needs of the first four scheduled patients, and not the
needs of the fifth patient, determine whether the fifth
patient can be scheduled or not. Thus, we can assume
that the number of patients scheduled on a diagnosis
day depends only on the size of the waiting list, and is
independent of how many and which patients were
scheduled for other diagnosis days.

Queueing model description
We model the arrivals of new patients as a Poisson
process, of which the arrival rate, k (patients per year), is

known. Note that since the CMCA recently started, no
historical data on patient arrivals is available. Since
patient arrivals originate from a large population of
independent (possible) patients, the Poisson assumption
is a reasonable assumption. The service discipline is FCFS.
A year is split into m time periods of equal length, with
one diagnosis day per time period. At the opening of the
CMCA, the value for m proposed by the AMC is twelve.
Recall the procedure given in Figure 1. An access time

of a patient consists of three parts. (1) The time until the
end of the time period. This time is stochastic and has a
uniform distribution. (2) The number of full time periods
the patient has to wait until being scheduled. This is
stochastic, and has a discrete distribution W that has to
be determined. (3) The time between being scheduled
and the actual visit to the hospital. This time is
deterministic.
Let An be the random number of arrivals in time period

n. Denote by Qn the number of waiting patients at the end
of time period n. Out of Qn waiting patients, a random
number Bn of patients are scheduled for diagnosis day n.
The distribution of Bn depends on the value of Qn. This

Time

Time

Legend for physicians: Legend for pa�ents:
1 Pa�ent 1 7 MTM 14 EMG
2 Pa�ent 2 8 Clinical photograph 15 Cardiac ultrasound / ECG
3 Pa�ent 3 9 Intake 16 Blood examina�on
4 Pa�ent 4 10 Neurologist 17 X-ray
5 Pa�ent 5 11 Clinical gene�cist 18 Muscle ultrasound
6 All 12 Rehabilita�on physician 19 Final mee�ng neurologist

Break 13 Physiotherapist 20 Final mee�ng nurse prac��oner
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Figure 3 An exemplary day schedule for a diagnosis day.
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dependence is described by the conditional probabilities:
PðBn ¼ bjQn ¼ qÞ, q�0, and 0� b� q. For the case study,
these are the probabilities obtained from simulations as
discussed in ‘‘Number of scheduled patients per diagnosis
day’’ section (see Table 4).
The main performance characteristic of interest is the

access time of the patients. Denote by Wn the access time
of a patient that arrived at time period n. The distribution
of Wn depends on the queue length at the beginning of
time period n, denoted by Yn. The following equations
hold:

Qn ¼ Yn þ An; and ð2Þ

Ynþ1 ¼ Qn � Bn; n ¼ 1;2; . . .: ð3Þ

Here An is independent of the other random variables,
and Bn depends on Qn. Assuming that the arrival rate is
not too high, it will often happen that all waiting
patients in the queue are scheduled. In that case, the
stochastic process Wn will soon reach stationarity;
therefore, we choose to obtain its stationary distribution
W. To this end, we first determine the stationary distri-
bution Y of Yn and then obtain the distribution of W us-
ing the renewal theory argument. The details of the
derivation are provided in Appendix B.

Numerical results

The distribution of W is evaluated numerically, by
approximating Yn with a finite Markov chain. This is
justified by the fact that in practice we can find a large
enough N (say, N ¼ 100) such that Yn never reaches or
exceeds N. The details are provided in Appendix B. The
initial frequency of diagnosis days that the CMCA will
apply is (at most) twelve such days per year, and
therefore, m ¼ 12. Next, as stated in ‘‘Case study’’ section,
the arrival rate is estimated to be between 20 and 50
patients per year. The time between being scheduled for a
diagnosis day and the actual visit to CMCA is precisely
one month. For these input parameters, we obtain the
total average access times, from the time the question-
naire is received till the hospital visit. The results are
presented in Figure 4.

We see that excessively large access times are
observed in two extreme cases. When the arrival rate
is small, less than ten patients per year, large access
times arise because at least two patients have to be
scheduled on a single day, and thus arriving patients
often have to wait for another arrival. When there are
more than fifty patients a year, large average access
times arise since the maximal capacity is almost met. In
between, the average access time is stable at a value just
below two months.
The shape of the distribution of the access times

heavily depends on the arrival rate k. This can be seen
in Figure 5. When the arrival rate is low, the moment in a
month when a patient arrives does not have any influ-
ence on the distribution of the access times. However, as
the value of k increases, a heavier dependence shows,
because the patients that arrive at the beginning of a
month have a considerably higher chance to be sched-
uled earlier.
We emphasize that the access times are heavily depen-

dent on the constraints of the scheduling problem. When
the bottleneck constraints, as mentioned in ‘‘Computed
schedules’’ section, are relaxed, then larger groups of
patients can be scheduled together. For example, if the
clinical geneticist would be available all day, it will in

Table 4 The distribution of the capacity of diagnosis days

Length waiting

list

Number of patients scheduled

0 1 2 3 4 5

0 100% – – – – –

1 100% – – – – –

2 – – 100% – – –

3 – – – 100% – –

4 – – – 0.3% 99.7% –

5 – – – 0.3% 13.7% 86.0%
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Figure 4 Average access times in months (m = 12).
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some cases be possible to schedule one more patient per
day. This will increase the maximum capacity and result
in smaller access times.
Concluding, the number of patient arrivals is uncer-

tain, which is currently around 20 patients a year, and is
expected to increase. Figure 4 shows that expected access
times are very similar for arrival rates between 10 and 45
patients per year. Therefore, the proposed setup of the
CMCA is robust to this data uncertainty.

Discussion
We showed how a combination of operations research
techniques, including integer linear programming, sim-
ulation and queuing theory helps the AMC in organizing
care for children with neuromuscular diseases. The
treatment center embodies a transformation from sup-
ply-driven to demand-driven patient care. Customized
diagnostics and treatment can be offered in a combined
visit. To realize this, all practical constraints and prefer-
ences were collected and incorporated in an ILP by which
feasible day schedules for multiple patient visits can be
constructed. Simulations give insight into the capacity of
the CMCA, given the availability of staff and equipment
and estimates on patient demand in the number of
arrivals and required appointments. Finally, a queueing
model predicts the access time distributions for diagnos-
tic patients based upon the simulation outcomes.
Formulating the day scheduling model was an iterative

process, intensively involving the clinicians. Results on
initial formulations predicted very long patient access
times. Presenting these results to the clinicians, yielded
that some highly restricting constraints were loosened or
deleted. For example, there was a constraint that the
physicians were to have at least two appointments per
day. Thus, only patients with the same needs could be
scheduled together, resulting in long access times.
Another example, where the AMC still struggles, is the
choice whether the MTM should start at a fixed time or

not. Although a fixed time is preferred by the clinicians,
from a patient’s point of view, based on the experimen-
tation outcomes, we strongly recommend it to be flexi-
ble. We believe that the benefit of quantitative analysis in
such a ‘negotiation’ process is that it rationalizes the
process of realizing a good trade-off between interests of
clinicians and patients.
The value of applying Operations Research to this

healthcare delivery problem has been expressed in both
its process and its outcomes. The process of modelling
leads to better understanding and recognition of a
problem. The outcomes of mathematical models make
it possible to prospectively assess the consequences of
various alternative interventions, without actually
changing the system. Modelling is highly suitable in
healthcare settings—since experimenting in practice may
induce risks for patients and field experimenting takes
more time, is more costly, and offers less statistical
reliability. Moreover, since healthcare environments are
generally politically charged, by quantifying the impact
of potential solutions, fact-based rather than feeling-
based decision making can be realized.
A limitation of our study is the availability of accurate

data. Since the center just opened its doors, no historical
data was available besides data on realizations of how the
treatment was previously delivered by different outpa-
tient clinics. In addition, patient-type mix and required
appointments could only be estimated from physician’s
expert opinions and data on the former patient popula-
tion. However, in ‘‘Computed schedules’’ section, it is
observed that the bottlenecks in the schedules are mainly
in the availability of resources and not in the exact
evaluation of the patient-type mix and appointment
requirements. Furthermore, having a focused care center
may increase the attractiveness for patients to come to
the AMC, which makes predictions on the number of
patient arrivals highly uncertain. This is accounted for by
studying several demand scenarios in Figure 4. It can be
seen that the average access time is similar for the
realistic demand scenarios. Concluding, the model is
robust to the data inaccuracy. As data inaccuracy is a
consequence of the lack of historical data, we recom-
mend the center to constantly monitor its operations.
We furthermore recommend to regularly repeat the
analysis so to reconsider both the frequency of carrying
out treatment days and the staff/equipment availability
during a treatment day.
In this paper, we have considered the FCFS discipline

for patients to be admitted from the waiting list. There
might be a discipline which gives a better performance, if
such a discipline increases the number of patients that
can be seen on one day. Investigating the existence of
such a policy is an interesting direction for future
research. However, when changing the service discipline,
the justification for the assumption of independence
between the batches of patients scheduled on consecu-
tive treatment days has to be reconsidered. Even more
prominent, the issue of practical acceptance needs to be
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addressed, since it is questionable how clinically accept-
able it would be to not schedule the patient that has been
on the waiting list the longest.
The first patients have visited the CMCA in a pilot phase

of the entire treatment concept. During this pilot phase,
the nurse practitioner enters the needs of the patients in
an Excel sheet. Given a set of patients with prescribed
consultations and examinations, and the availabilities of
the staff and equipment, the optimal schedule is deter-
mined using AIMMS. This is not the desired ultimate state,
since it still requires copying the resulting appointments
in the electronic agenda system by hand. In addition, the
AMC strongly opposes the implementation of different
software tools in different parts of the hospital, to prevent

the maintenance and support task of ICT department to
become inefficient if not impossible. Therefore, the
scheduling algorithm is intended to be incorporated in
the new hospital-wide electronic agenda system that is
currently under construction. For such a system, it will be
required to be able to communicate with an ILP solver,
which will be a main challenge for the ICT design. Modern
ICT systems for hospital organization increasingly often
embrace operations research solutions, in particular, in
capacity evaluation and appointment scheduling. In the
near future, advanced quantitative schemes, as the one
described in this article, should become a standard part of
hospitals’ integral ICT support, for transparent and effi-
cient planning of high-quality care.
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Appendix A: Mathematical formulation appointment scheduling

This appendix contains the mathematical formulation of
the ILP described in ‘‘Model formulation’’ section. This
model is applicable to both types of treatment days:
diagnosis and follow-up days. The constraints are used for
both days unless indicated otherwise.

Variables and parameters
Recall from (1) that the decision variables are denoted by
zj;p;s;t 2 f0;1g, which equals one if patient j has an
appointment with resource s for procedure p starting at
time slot t. Other variables and parameters will be
introduced when they are used for the first time. A
complete list of sets, indices, variables, parameters and
their properties can be found in Tables 5 and 6.

Constraints
In the ILP, several types of constraints are considered. We
distinguish: constraints on the selection of patients, basic
planning constraints, precedence constraints, appoint-
ment constraints, MTM constraints, and defining con-
straints. Below each constraint is presented in detail.
Selection of patients. A patient can either have a

complete visit (if all appointments are scheduled), or a
partial visit (if most appointments are scheduled), or not
be scheduled at all. We denote by gj and ej the binary
variables that indicate whether a patient has, respec-
tively, a complete visit (gj ¼ 1) or a partial visit (ej ¼ 1). A
patient cannot have a partial and complete visit at the
same time, and therefore we have

gj þ ej �1; for all j: ð4Þ

Patient j receives the number oj of desirable but not nec-
essary appointments. The binary parameter Nj;p denotes
whether patient j needs procedure p or not. Denote by the
binary variable xj;p;t whether patient j has an appointment
for procedure p starting at time slot t or not. Constraint (5)
below ensures that a patient with a partial visit receives at
least as many appointments as necessary. By using a big-
M constraint (see Winston Winston (2003)), where
M1 ¼ jPj, we make sure that this constraint is always sat-
isfied for patients with a complete visit or no visit:

M1 � ð1� ejÞ þ oj þ
X

p;t

xj;p;t �
X

p

Nj;p; for all j: ð5Þ

At least two patients should be scheduled on a treatment
day; otherwise it is cancelled:

X

j

ðgj þ ejÞ�2: ð6Þ

Patients are scheduled according to the FCFS discipline:

gj þ ej � gj0 þ ej0 ; for all j; j0 2 J such that j\j0: ð7Þ

Basic planning constraints Denote by Lj;p the number of
time slots patient j needs to undergo procedure p. If
Lj;p ¼ 0, then the patient does not need the procedure.
Constraint (8) states that a patient gets each treatment at
the most once:

X

t

xj;p;t �1; for all j; p such that Lj;p [0: ð8Þ

Denote by the binary Qs;p whether resource s is qualified
to perform procedure p. Each scheduled procedure
should have a qualified resource performing it at the
intended time. This constraint, as given in (9), holds for
all procedures except the MTM, for which we have a
separate set of constraints. Furthermore, (9) in combina-
tion with (8) ensures that no dummy appointments are
scheduled to reduce the idle time of staff members:

X

s

zj;p;s;t � Qs;p ¼ xj;p;t ; for all i; j; p

such that p 6¼ pMTM andLj;p [0:
ð9Þ

Denote by the binary As;t whether resource s is available
for the CMCA at time t. Recall that zj;p;s;t ¼ 1 if procedure
p starts at time t. The following constraint (10) ensures
that resource s is available and is scheduled only for one
procedure with one patient at a time. The latter is done
by checking whether or not an appointment has started
in the past that has not yet finished:

X

j;p

Xt

t0¼maxf1;t�Lj;pþ1g
zj;p;s;t 0 �As;t ; for all s; t: ð10Þ

Precedence constraints Some treatments have to be per-
formed in a given order. For example, an intake
appointment of a patient should be scheduled before all
other appointments of the day. Denote with the binary
Hp;p0 whether procedure p should be performed before
procedure p0 in case a patient needs both procedures.
Since the constraint only holds for appointments p, p0

that are both scheduled, we introduce the binary variable
cj;p;p0 which is one if both p and p0 are scheduled for
patient j. This variable is only relevant when both pro-
cedures are needed by the patient and there is a prece-
dence constraint. The following constraint (11) ensures
cj;p;p0 ¼ 1 when both procedures p and p0 are needed:

X

t

ðxj;p;tþxj;p0 ;tÞ � 1� cj;p;p0 ;

for all j; p; p0 such that Hp;p0 ¼ 1;Lj;p[0;Lj;p0 [0:

ð11Þ

Table 5 Sets and indices ILP

Set Description Index

J Patients j; j0; j00

P Procedures p; p0

S Resources s

T ¼ f1;2; . . .; tendg Time slots t; t 0
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Now, we can formulate the precedence constraint, in
combination with the constraint on a minimum amount
of time between the starting times of some combinations
of treatments. This minimum amount of time slots is
denoted by Fp;p0 . The big-M formulation ensures that the
constraint is always satisfied when cj;p;p0 ¼ 0. In this con-
straint, a value of M2 ¼ 3 � jT j suffices:
X

t

t � ðxj;p0;t � xj;p;tÞ � Lj;p � Fp;p0 þ ð1� cj;p;p0 Þ �M2�0;

for all j; p; p0 such that Hp;p0 ¼ 1;Lj;p[0;Lj;p0 [0:

ð12Þ

CMCA appointment constraints A patient can get some of
his treatments simultaneously. Denote by the binary Cp;p0

whether the procedures p and p0 can be carried out for the
same patient at the same time. The next constraint
checks, for each time slot and each combination of
appointments, whether they are being performed or not.
This is only relevant if the two procedures cannot be
performed concurrently, and a qualified resource should
be available. This is not relevant for the MTM, since
patients are not present there.

Xt

t 0¼maxf1;t�Lj;pþ1g
xj;p;t 0 þ

Xt

t 0¼maxf1;t�Lj;p0 þ1g
xj;p0;t 0 ;�1;

for all j; p; p0; t such that Cp;p0 ¼ 0; p[p0;
X

s

At;k � ðQp;sþQp0;sÞ[0; p 6¼ pMTM ; p0 6¼ pMTM :

ð13Þ

Apatientneeds a time to rest. Therefore, in the spanof three
hours, there is at least half anhour free fromappointments.
These breaks should have the length of at least one quarter
of an hour. Denote by the binary variable bj;t whether
patient j has an appointment at time t or not. Again, the
MTM is not considered as an appointment because the
patient is not present at the MTM. If a time slot is 15 min,
then we deduce from the above that 2 or every 12 slots
must be empty. This gives the following constraint:

Xtþ11

t 0¼t

bj;t �10; for all j; t: ð14Þ

Note that when time slots have a different length, con-
straint (14) can be easily adjusted to ensure the patient

Table 6 Parameters and variables ILP

Notation Description

Binary parameters

Qs;p 1 if resource s is qualified to perform procedure p

As;t 1 if resource s is available in time slot t

Cp;p0 1 if procedures p and p0 can be performed simultaneously

Hp;p0 1 if procedure p has to be performed before procedure p0

Nj;p 1 if patient j needs to undergo procedure p

Ej;p 1 if procedure p is necessary for patient j

Integer parameters

Fp;p0 Minimal number of time slots before start of procedure p0 after start of p

tMTM Starting time slot of the MTM

pMTM Procedure number of the MTM

Lj;p Number of time slots that procedure p takes for patient j. Lj;p ¼ 0 indicates that

procedure p is not required for patient j.

mj Maximum number of appointment time slots patient j can handle on a day

dj Number of treatment days over which the appointments of patient j may be spread

oj Maximum number of desirable appointments that patient j is allowed to skip in a partial visit

Real parameters

us Relative weight of idle time of staff member s

kj Relative weight of patient j

Binary variables

zj;p;s;t 1 if patient j has an appointment with resource s for procedure p starting at time slot t

xj;p;t 1 if patient j has an appointment for procedure p starting at time slot t

gj 1 if patient j has a complete visit

ej 1 if patient j has a partial visit

bj;t 1 if patient j has an appointment at time slot t

cj;p;p0 1 if patient j has both appointments p and p0 scheduled

General integer variables

ymin
j First time slot at which patient j has an appointment

ymax
j Last time slot at which patient j has an appointment

ymin
s First time slot at which staff member s has an appointment

ymax
s Last time slot at which staff member s has an appointment
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has enough time to rest. However, an additional con-
straint will be necessary so that each break is at least 15
min long.

Some appointments are obligatory: the ‘necessary’
appointments. If these are not scheduled, the patient
cannot visit the CMCA. Denote by the binary Ej;p whether
an appointment is necessary or not. Thus, for all
appointments that are necessary, we require

gj þ ej �
X

t

xj;p;t ; for all j; t such that Ej;p ¼ 1: ð15Þ

Patient-specific constraints Denote by mj the maximum
number of time slots of appointments that patient j can
have on one treatment day. Then we have the following
constraint (16) that says that a patient gets no more
treatment time than he/she can handle on a day:

X

t

bj;t �mj; for all j: ð16Þ

Sometimes, appointments of a patients have to be
spread over several days because of the requirements of
the patient. The number of treatment days patient j has
left until all appointments are scheduled, is given by dj.
The right-hand side of (17) below is the total appoint-
ment length of patient j in one treatment day. If dj [1,
then only complete visit is allowed. Constraint (17)
ensures that at least fraction 1=dj of the treatment is
accomplished in one day for patient j who has a complete
visit:

gj �
1

dj
�
X

p 6¼pMTM

Lj;p �
X

t

X

p 6¼pMTM

xj;p;t � Lj;p; for all j: ð17Þ

Multidisciplinary Team Meeting constraints We schedule the
MTM as one appointment for all patients. Using prece-
dence constraints below, we will ensure the length of the
MTM is correct. The core team members are formally
assigned to the first patient:

X

s

zj;p;s;t ¼ xj;p;t �
X

s

Qp;s for all t; p ¼ pMTM ; j ¼ 1:

ð18Þ

Now we define the precedence constraints for the MTM.
Some of the appointments must be finished before the
MTM. Thus, we define a constraint similar to (12)

X

t

t � ðxj0 ;p0;t � xj;p;tÞ � Lj;p � Fp;p0 þ ð1� cj;p;p0 Þ �M2 �0;

for all j; j0; p; p0 such thatHp;p0

¼ 1;Lj;p [0; p0 ¼ pMTM :

ð19Þ

Some appointments can start only after the MTM. The
length of the MTM for scheduled patient j is
ðgj þ ejÞ � Lj;pMTM

. This yields a constraint similar to (19)

X

t

t�ðxj;p;t � xj0;p0;tÞ �
X

j00

Lj00 ;p0 � ðgj00 þ ej00 Þ � Fp;p0

þ ð1�
X

t

xj0;p0;tÞ �M2 þ ð1�
X

t

xj;p;tÞ �M2�0;

for all j; j0; p; p0 such thatp0 ¼ pMTM ;Lj;p0 [0;Hp0;p ¼ 1:

ð20Þ

Sometimes it is desirable to always start the MTM at a
fixed time. Denote by tMTM the time slot in which the
MTM should start. Then we obtain a constraint for the
starting time of each MTM appointment:

X

t

txj;p;t ¼ tMTM ; for all j; p ¼ pMTM : ð21Þ

Defining constraints This group of constraints determines
the starting and the end times of the patients and staff
members. Denote by ymin

j the first time slot when patient
j has an appointment. We define ymin

j through a big-
M constraint (22) that holds for all t smaller than the
starting time of the first appointment. Here M3 ¼ jT j is
sufficient:

ymin
j �M3 þ ðt �M3Þ � xj;p;t ; for all j; p; t such thatp 6¼ pMTM :

ð22Þ

The last time slot when patient j has an appointment,
ymax
j , is determined by the following constraint:

ymax
j �ðt þ Lj;pÞ � xj;p;t ; for all j; p; t such that p 6¼ pMTM :

ð23Þ

Note that when patient j is not planned, ymin
j and ymax

j can
take any integer value in the interval ½0; . . .; jT j�.
In a similar fashion, we can derive the minimum and

maximum values for staff members:

ymin
s �M3 þ ðt �M3Þ � zj;p;s;t ; for all j; p; s; t; and ð24Þ

ymax
j �ðt þ Lj;pÞ � zj;p;s;t ; for all j; p; s; t. ð25Þ

The next constraint determines whether a patient has an
appointment at a certain time or not; recall that this is
denoted by the binary variable bj;t . The following con-
straint forces bj;t ¼ 1 when a patient has an appointment.
The big-M, is needed because a patient can have multiple
appointments at one time slot. Herewe takewithM4 ¼ jPj:

X

p 6¼pMTM

Xt

t 0¼maxf1;t�Lj;pþ1g
xj;p;t 0 �M4 � bj;t ; for all j; t: ð26Þ

The following constraint (27) ensures bj;t ¼ 0 whenever
patient j has no appointment at time t

bj;t �
X

p 6¼pMTM

Xt

t0¼maxf1;t�Lj;pþ1g
xj;p;t 0 ; for all j; t: ð27Þ
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Objective function
The objective function is a linear combination of the five
objective functions as described below.
Maximize the number of patients that have a complete visit

Denote by kj the relative weight of patient j. Then we
want to maximize the following expression:

X

j

gj � kj: ð28Þ

Maximize the number of patients that have a partial visit This
expression is similar to (28)

X

j

ej � kj: ð29Þ

Maximize the treatment time of all scheduled patients This
objective maximizes the utilization of the hospital facil-
ities. Note that constraint (8) ensures that no dummy
appointments are being scheduled. If two appointments
with lengths Lj;p and Lj;p0 are scheduled at the same time,
then we need to add Lj;p þ Lj;p0 to the total treatment
time. Thus, we want to maximize

X

j;p;t

xj;p;t � Lj;p: ð30Þ

Minimize the idle time in the schedules of the staff We have
already defined the starting and end times of a staff
member. Since the idle time of some staff members (or
resources) might be more important than that of others,
we assign a relative weight us to the idle time of a staff
member (or resource) s. Thus, we wish to minimize the
following expression:

X

s

us � ymax
s � ymin

s �
X

j;p;t

zj;p;s;t � Lj;p

0

@

1

A: ð31Þ

Minimize the idle time in the schedules of the patients It is
assumed that the idle time of each patient is equally
important. Note that constraint (14) ensures that each
patient has enough time to rest. Then, the total idle time
of the patients equals to

X

j

ymax
j � ymin

j �
X

t

bj;t

 !

: ð32Þ

The expressions (28)–(32) contribute to the objective
functions, each having its own relative importance. The
coefficients determining the relative importance are
given by a, b, c, d , and �, which are calibrated as discussed
in ‘‘Appointment scheduling’’ section. Thus, we obtain
the following objective function:

max a � ð28Þ þ b � ð29Þ þ c � ð30Þ � d � ð31Þ � � � ð32Þ:
ð33Þ

Appendix B: Derivation of the access time
distribution
In this appendix, we derive the stationary distribution of
the stationary waiting time W as defined in ‘‘Queueing
model description’’ section.
First, we write the transition probabilities for Yn. From

(3), by conditioning on ½Qn ¼ q� and noting that PðBn ¼
q� ijQn ¼ qÞ ¼ 0 whenever q� i\0, we obtain

PðYnþ1 ¼ ijYn ¼ jÞ ¼
X1

q¼maxði;jÞ
PðBn ¼ q� ijQn ¼ qÞ �PðQn ¼ qÞ:

Next, using (2) we get

PðYnþ1 ¼ ijYn ¼ jÞ ¼
X1

q¼max ði;jÞ
PðBn ¼ q� ijQn ¼ qÞ

� PðAn ¼ q� jÞ; i� q:

ð34Þ

From the transition probabilities in (34), we determine
the stationary distribution Y of Yn. In the case study, we
obtain an approximation for the stationary distribution.
To this end, we bound the maximal value of Yn with
some large number N so that P½Y �N� is sufficiently close
to zero. Then, the stationary distribution for the bounded
chain is computed by numerically solving the balance
equations. Finally, we approximate Y with the stationary
distribution of the bounded Markov chain, and use
P½Yn ¼ k� ¼ 0 when k�N.

Now our goal is to derive the stationary waiting times.
To this end, denote by PðW 2 AjY ¼ iÞ the stationary
probability that waiting time of an arriving patient is the
number in a set A � f0;1; . . .g, provided that there were
i ¼ 0;1; . . . waiting patients at the beginning of the time
slot of the arrival. Consider the sequence of time periods n
such that ½Yn ¼ i�. The distribution of the waiting times of
the An patients arriving in such time period is completely
defined by Yn. Thus, given Yn, these waiting times are
independent of the waiting times of the patients arriving
in the other time periods. Denote by A

ðkÞ
n the number of

patients that have arrived in timeperiod n andhave towait
k time slots before being scheduled. Then using the
renewal reward argument, we write

PðW ¼ kjY ¼ iÞ ¼ E½AðkÞ
n jYn ¼ i�

E½AnjYn ¼ i� ¼ E½AðkÞ
n jYn ¼ i�
E½An�

¼ E½AðkÞ
n jYn ¼ i�
k=m

:

ð35Þ

Let us now define the probability PðW�1jY ¼ iÞ. From
(35,) it follows that

PðW�1jY ¼ iÞ ¼ E½An � A
ð0Þ
n jYn ¼ i�

k=m
; ð36Þ

where for the numerator, we write
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E½An � A
ð0Þ
n jYn ¼ i;An ¼ kn� ¼

Xiþkn

bn¼0

PðBn ¼ bnjQn ¼ iþ knÞ

� E½An � A
ð0Þ
n jYn ¼ i;An ¼ kn;Bn ¼ bn�;

ð37Þ

and for the last component, above holds:

E½An � A
ð0Þ
n jYn ¼ i;An ¼ kn;Bn ¼ bn� ¼ min fkn; iþ kn � bng:

ð38Þ

Using (36)–(38), the probability PðW�1jY ¼ iÞ can be
directly computed.

Similarly, we can write the expression for
PðW� 2jY ¼ iÞ. Note that sometimes a patient has to
wait longer because there are not enough patients on the
list to form a batch of a minimal size. Thus, the waiting
times of the patients arriving in time slot n depend also
on the arrivals in time slot nþ 1. Specifically, we derive
the following:

PðW�2jY ¼ iÞ ¼m

k

X1

kn¼0

PðAn ¼ knÞ
Xiþkn

bn¼0

PðBn ¼ b1jQn ¼ iþ knÞ

�E½An �A
ð0Þ
n �A

ð1Þ
n jY ¼ i;An ¼ kn;Bn ¼ bn�;

where

E½An�A
ð0Þ
n �A

ð1Þ
n jY ¼ i;An ¼ kn;Bn ¼ bn� ¼

X1

knþ1¼0

PðAnþ1 ¼ knþ1Þ

�
Xiþknþknþ1þbn

bnþ1¼0

PðBnþ1 ¼ bnþ1jQnþ1 ¼ iþ knþ knþ1þbnÞ

�E½A�Að0Þ �Að1ÞjY ¼ i;An ¼ kn;Bn ¼ bn;Anþ1

¼ knþ1;Bnþ1 ¼ bnþ1�;

and

E½An � A
ð0Þ
n � A

ð1Þ
n jY ¼ i;An ¼ kn;Bn ¼ bn;Anþ1 ¼ knþ1;Bnþ1

¼ bnþ1� ¼ max f0;min fkn; iþ kn � bn � bnþ1gg:

In a similar fashion, we derive PðW� kjY ¼ iÞ for k ¼
3;4; . . . , and finally, PðW ¼ 0jY ¼ iÞ ¼ 1� PðW�1jY ¼ iÞ.
To complete the derivation, we assume that the system

functions in a stationary regime, and we use the full
probability formula, where the exchange of the limit and
the summation is justified by the dominating conver-
gence theorem:

PðW� kÞ ¼
X1

i¼0

PðY ¼ iÞPðW� kjY ¼ iÞ; k ¼ 0;1; . . .
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