1,113 research outputs found

    Nonlinear denoising of transient signals with application to event related potentials

    Full text link
    We present a new wavelet based method for the denoising of {\it event related potentials} ERPs), employing techniques recently developed for the paradigm of deterministic chaotic systems. The denoising scheme has been constructed to be appropriate for short and transient time sequences using circular state space embedding. Its effectiveness was successfully tested on simulated signals as well as on ERPs recorded from within a human brain. The method enables the study of individual ERPs against strong ongoing brain electrical activity.Comment: 16 pages, Postscript, 6 figures, Physica D in pres

    Patient-adapted and inter-patient ecg classification using neural network and gradient boosting

    Get PDF
    Heart disease diagnosis is an important non-invasive technique. Therefore, there exists an effort to increase the accuracy of arrhythmia classification based on ECG signals. In this work, we present a novel approach of heart arrhythmia detection. The model consists of two parts. The first part extracts important features from raw ECG signal using Auto-Encoder Neural Network. Extracted features obtained by Auto-Encoder represent an input for the second part of the model, the Gradient Boosting and Feedforward Neural Network classifiers. For comparison purposes, we evaluated our approach by using MIT-BIH ECG database and also following recommendations of the Association for the Advancement of Medical Instrumentation (AAMI) for ECG class labeling. We divided our experiment into two scenarios. The first scenario represents the classification task for the patient-adapted paradigm and the second one was dedicated to the inter-patient paradigm. We compared the measured results to the state-of-the-art methods and it shows that our method outperforms the state-of-the art methods in the Ventricular Ectopic (VEB) class for both paradigms and Supraventricular Ectopic (SVEB) class in the inter-patient paradigm.Web of Science28325424

    Exploiting Prior Knowledge in Compressed Sensing Wireless ECG Systems

    Full text link
    Recent results in telecardiology show that compressed sensing (CS) is a promising tool to lower energy consumption in wireless body area networks for electrocardiogram (ECG) monitoring. However, the performance of current CS-based algorithms, in terms of compression rate and reconstruction quality of the ECG, still falls short of the performance attained by state-of-the-art wavelet based algorithms. In this paper, we propose to exploit the structure of the wavelet representation of the ECG signal to boost the performance of CS-based methods for compression and reconstruction of ECG signals. More precisely, we incorporate prior information about the wavelet dependencies across scales into the reconstruction algorithms and exploit the high fraction of common support of the wavelet coefficients of consecutive ECG segments. Experimental results utilizing the MIT-BIH Arrhythmia Database show that significant performance gains, in terms of compression rate and reconstruction quality, can be obtained by the proposed algorithms compared to current CS-based methods.Comment: Accepted for publication at IEEE Journal of Biomedical and Health Informatic

    Optimal ECG Signal Denoising Using DWT with Enhanced African Vulture Optimization

    Get PDF
    Cardiovascular diseases (CVDs) are the world's leading cause of death; therefore cardiac health of the human heart has been a fascinating topic for decades. The electrocardiogram (ECG) signal is a comprehensive non-invasive method for determining cardiac health. Various health practitioners use the ECG signal to ascertain critical information about the human heart. In this paper, the noisy ECG signal is denoised based on Discrete Wavelet Transform (DWT) optimized with the Enhanced African Vulture Optimization (AVO) algorithm and adaptive switching mean filter (ASMF) is proposed. Initially, the input ECG signals are obtained from the MIT-BIH ARR dataset and white Gaussian noise is added to the obtained ECG signals. Then the corrupted ECG signals are denoised using Discrete Wavelet Transform (DWT) in which the threshold is optimized with an Enhanced African Vulture Optimization (AVO) algorithm to obtain the optimum threshold. The AVO algorithm is enhanced by Whale Optimization Algorithm (WOA). Additionally, ASMF is tuned by the Enhanced AVO algorithm. The experiments are conducted on the MIT-BIH dataset and the proposed filter built using the EAVO algorithm, attains a significant enhancement in reliable parameters, according to the testing results in terms of SNR, mean difference (MD), mean square error (MSE), normalized root mean squared error (NRMSE), peak reconstruction error (PRE), maximum error (ME), and normalized root mean error (NRME) with existing algorithms namely, PSO, AOA, MVO, etc

    On the Sparsest Representation of Electrocardiograms

    Get PDF
    In recent years, telecardiology has been growing in significance, due to the shortage of local caregivers in various parts of the world. As the cardiac data volume grows, compact representation becomes imperative in view of bandwidth, storage, power and other constraints. In this backdrop, we present empirical studies on electrocardiogram (ECG) signal representation using a wide variety of wavelet bases. Specifically, we arrange the transform coefficients in decreasing order of magnitude, and count the number of coefficients accounting for 99% of the signal energy (a sparser representation requires less number). We observe that 'Symlet' and 'Daubechies' families generally offer more compact representation compared to Meyer wavelet as well as biorthogonal and reverse biorthogonal families. In particular, the sparsest representation is provided by the 'sym4' (closely followed by the 'db4') wavelet basis for a broad class of ECG signals. Interestingly, this behavior is observed quite consistently across all fifteen (twelve standard and three Frank) leads. Our study assumes significance in the context of basis selection for various ECG signal processing applications, including compression, denoising and compressive sensin
    corecore