2,034 research outputs found

    Complexity of Bradley-Manna-Sipma Lexicographic Ranking Functions

    Get PDF
    In this paper we turn the spotlight on a class of lexicographic ranking functions introduced by Bradley, Manna and Sipma in a seminal CAV 2005 paper, and establish for the first time the complexity of some problems involving the inference of such functions for linear-constraint loops (without precondition). We show that finding such a function, if one exists, can be done in polynomial time in a way which is sound and complete when the variables range over the rationals (or reals). We show that when variables range over the integers, the problem is harder -- deciding the existence of a ranking function is coNP-complete. Next, we study the problem of minimizing the number of components in the ranking function (a.k.a. the dimension). This number is interesting in contexts like computing iteration bounds and loop parallelization. Surprisingly, and unlike the situation for some other classes of lexicographic ranking functions, we find that even deciding whether a two-component ranking function exists is harder than the unrestricted problem: NP-complete over the rationals and Ī£2P\Sigma^P_2-complete over the integers.Comment: Technical report for a corresponding CAV'15 pape

    Type classes for efficient exact real arithmetic in Coq

    Get PDF
    Floating point operations are fast, but require continuous effort on the part of the user in order to ensure that the results are correct. This burden can be shifted away from the user by providing a library of exact analysis in which the computer handles the error estimates. Previously, we [Krebbers/Spitters 2011] provided a fast implementation of the exact real numbers in the Coq proof assistant. Our implementation improved on an earlier implementation by O'Connor by using type classes to describe an abstract specification of the underlying dense set from which the real numbers are built. In particular, we used dyadic rationals built from Coq's machine integers to obtain a 100 times speed up of the basic operations already. This article is a substantially expanded version of [Krebbers/Spitters 2011] in which the implementation is extended in the various ways. First, we implement and verify the sine and cosine function. Secondly, we create an additional implementation of the dense set based on Coq's fast rational numbers. Thirdly, we extend the hierarchy to capture order on undecidable structures, while it was limited to decidable structures before. This hierarchy, based on type classes, allows us to share theory on the naturals, integers, rationals, dyadics, and reals in a convenient way. Finally, we obtain another dramatic speed-up by avoiding evaluation of termination proofs at runtime.Comment: arXiv admin note: text overlap with arXiv:1105.275

    Equilibria, Fixed Points, and Complexity Classes

    Get PDF
    Many models from a variety of areas involve the computation of an equilibrium or fixed point of some kind. Examples include Nash equilibria in games; market equilibria; computing optimal strategies and the values of competitive games (stochastic and other games); stable configurations of neural networks; analysing basic stochastic models for evolution like branching processes and for language like stochastic context-free grammars; and models that incorporate the basic primitives of probability and recursion like recursive Markov chains. It is not known whether these problems can be solved in polynomial time. There are certain common computational principles underlying different types of equilibria, which are captured by the complexity classes PLS, PPAD, and FIXP. Representative complete problems for these classes are respectively, pure Nash equilibria in games where they are guaranteed to exist, (mixed) Nash equilibria in 2-player normal form games, and (mixed) Nash equilibria in normal form games with 3 (or more) players. This paper reviews the underlying computational principles and the corresponding classes

    Grover's Quantum Search Algorithm and Diophantine Approximation

    Full text link
    In a fundamental paper [Phys. Rev. Lett. 78, 325 (1997)] Grover showed how a quantum computer can find a single marked object in a database of size N by using only O(N^{1/2}) queries of the oracle that identifies the object. His result was generalized to the case of finding one object in a subset of marked elements. We consider the following computational problem: A subset of marked elements is given whose number of elements is either M or K, M<K, our task is to determine which is the case. We show how to solve this problem with a high probability of success using only iterations of Grover's basic step (and no other algorithm). Let m be the required number of iterations; we prove that under certain restrictions on the sizes of M and K the estimation m < (2N^{1/2})/(K^{1/2}-M^{1/2}) obtains. This bound sharpens previous results and is known to be optimal up to a constant factor. Our method involves simultaneous Diophantine approximations, so that Grover's algorithm is conceptualized as an orbit of an ergodic automorphism of the torus. We comment on situations where the algorithm may be slow, and note the similarity between these cases and the problem of small divisors in classical mechanics.Comment: 8 pages, revtex, Title change

    New Results for Domineering from Combinatorial Game Theory Endgame Databases

    Full text link
    We have constructed endgame databases for all single-component positions up to 15 squares for Domineering, filled with exact Combinatorial Game Theory (CGT) values in canonical form. The most important findings are as follows. First, as an extension of Conway's [8] famous Bridge Splitting Theorem for Domineering, we state and prove another theorem, dubbed the Bridge Destroying Theorem for Domineering. Together these two theorems prove very powerful in determining the CGT values of large positions as the sum of the values of smaller fragments, but also to compose larger positions with specified values from smaller fragments. Using the theorems, we then prove that for any dyadic rational number there exist Domineering positions with that value. Second, we investigate Domineering positions with infinitesimal CGT values, in particular ups and downs, tinies and minies, and nimbers. In the databases we find many positions with single or double up and down values, but no ups and downs with higher multitudes. However, we prove that such single-component ups and downs easily can be constructed. Further, we find Domineering positions with 11 different tinies and minies values. For each we give an example. Next, for nimbers we find many Domineering positions with values up to *3. This is surprising, since Drummond-Cole [10] suspected that no *2 and *3 positions in standard Domineering would exist. We show and characterize many *2 and *3 positions. Finally, we give some Domineering positions with values interesting for other reasons. Third, we have investigated the temperature of all positions in our databases. There appears to be exactly one position with temperature 2 (as already found before) and no positions with temperature larger than 2. This supports Berlekamp's conjecture that 2 is the highest possible temperature in Domineering

    Another approach to Runge-Kutta methods

    Get PDF
    The condition equations are derived by the introduction of a system of equivalent differential equations, avoiding the usual formalism with trees and elementary differentials. Solutions to the condition equations are found by direct optimization, avoiding the necessity to introduce simplifying assumptions upon the Runge-Kutta coefficients. More favourable coefficients, in view of rounding errors, are found
    • ā€¦
    corecore