7 research outputs found

    ์‹ ๋ฐœ ์žฅ์ฐฉ ๊ด€์„ฑ ์„ผ์„œ ๊ธฐ๋ฐ˜ ๋ณดํ–‰์ž ์ถ”์ธก ํ•ญ๋ฒ•์˜ ์„ผ์„œ ๋Œ€์—ญํญ ๋ฐ ์ƒ˜ํ”Œ๋ง ์ฃผํŒŒ์ˆ˜์— ๋”ฐ๋ฅธ ์„ฑ๋Šฅ ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2019. 2. ๋ฐ•์ฐฌ๊ตญ.๊ฐœ์ธ์˜ ์œ„์น˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์–‘ํ•œ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ธฐ์ˆ ๋“ค์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋†’๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ ์€ ๊ฐœ์ธ ํ•ญ๋ฒ• ์‹œ์Šคํ…œ(PNS, Personal Navigation System)์ด๋ผ ๋ถˆ๋ฆฌ๋Š”๋ฐ, ์˜ˆ๋กœ, ์†Œ๋ฐฉ๊ด€์ด๋‚˜ ๊ตฐ์ธ์˜ ์ž„๋ฌด์ˆ˜ํ–‰ ์ค‘ ์œ„์น˜ ์ •๋ณด ์ œ๊ณต์ด๋‚˜ ์‡ผํ•‘๋ชฐ ๋‚ด์—์„œ ๊ณ ๊ฐ๋“ค์˜ ์œ„์น˜ ์ •๋ณด ์ œ๊ณต ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ฐœ์ธ ํ•ญ๋ฒ• ์‹œ์Šคํ…œ ์ค‘ ๋ณดํ–‰ ํ•ญ๋ฒ• ์‹œ์Šคํ…œ(PDR, Pedestrian Dead Reckoning)์€ ๊ด€์„ฑ ์„ผ์„œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ณดํ–‰์ž์˜ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ์‹ ๋ฐœ์— ๊ด€์„ฑ ์„ผ์„œ๋ฅผ ๋ถ€์ฐฉํ•œ ๋ณดํ–‰ ํ•ญ๋ฒ•์€ ๊ด€์„ฑ ํ•ญ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ์ž์ด๋กœ์™€ ๊ฐ€์†๋„๊ณ„์ด ๋ฐ”์ด์–ด์Šค์™€ ๋ฐฑ์ƒ‰ ์žก์Œ์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋Š” ์ถ”์ • ์˜ค์ฐจ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด์„œ ๊ด€์„ฑ ํ•ญ๋ฒ•์€ ์˜์†๋„ ๋ณด์ •(ZUPT, zero-velocity update)๊ณผ ๊ฒฐํ•ฉ๋œ๋‹ค. ์˜์†๋„ ๋ณด์ •์€ ๋ณดํ–‰์ž ์‹ ๋ฐœ์˜ ์†๋„๊ฐ€ ์ ‘์ง€๊ธฐ(stance phase)์—์„œ 0์ด๋ผ๊ณ  ๊ฐ€์ •ํ•œ๋‹ค. ๋ฐ”์ด์–ด์Šค์™€ ๋ฐฑ์ƒ‰ ์žก์Œ์œผ๋กœ ์ธํ•œ ์˜ค์ฐจ๋Š” ZUPT๋“ฑ์„ ์ด์šฉํ•˜์—ฌ ์ค„์ผ ์ˆ˜ ์žˆ์ง€๋งŒ, ๋‹ค๋ฅธ ์›์ธ์œผ๋กœ ์ธํ•œ ์˜ค์ฐจ๋Š” ์—ฌ์ „ํžˆ ๋‚จ์•„ ์žˆ๋‹ค. ๋ณดํ–‰ ์ค‘ ์‹ ๋ฐœ์˜ ์›€์ง์ž„์€ ๋‹ค์–‘ํ•œ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์œผ๋กœ ํ‘œํ˜„๋œ๋‹ค. ํŠนํžˆ, ์‹ ๋ฐœ์ด ์ง€๋ฉด์— ๋‹ฟ์œผ๋ฉด์„œ ์ถฉ๊ฒฉ์ด ๋ฐœ์ƒํ•˜๋Š” heel-strike์—์„œ๋Š” ์ž์ด๋กœ์™€ ๊ฐ€์†๋„๊ณ„ ์‹ ํ˜ธ๊ฐ€ ๊ธ‰๊ฒฉํžˆ ๋ณ€ํ•˜๋ฉด์„œ ๊ณ ์ฃผํŒŒ ์„ฑ๋ถ„์ด ํฌํ•จ๋  ๊ฒƒ์ด๋‹ค. ์„ผ์„œ๋Š” ๋Œ€์—ญํญ๊ณผ ์ƒ˜ํ”Œ๋ง ์ฃผํŒŒ์ˆ˜์— ์˜ํ•ด ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋Š” ์ฃผํŒŒ์ˆ˜ ๋ฒ”์œ„๊ฐ€ ๊ฒฐ์ •๋œ๋‹ค. ๋Œ€์—ญํญ ๋˜๋Š” ์ƒ˜ํ”Œ๋ง ์ฃผํŒŒ์ˆ˜๊ฐ€ ์ž‘์„ ๊ฒฝ์šฐ, ์ด๋ฅผ ์ดˆ๊ณผํ•˜๋Š” ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์ด ์ธก์ •๋˜์ง€ ์•Š์•„ ์ธก์ • ์ •ํ™•๋„๊ฐ€ ๋‚ฎ์•„์ง€๊ณ  ์œ„์น˜ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ณดํ–‰ ์ฃผ๊ธฐ ๋™์•ˆ ์„ผ์„œ๊ฐ€ ์ธก์ •ํ•œ ์‹ ํ˜ธ๋ฅผ ์ฃผํŒŒ์ˆ˜ ๋ถ„์„์„ ํ•˜๊ณ  ์ธก์ • ์‹ ํ˜ธ์˜ ์ •ํ™•๋„์˜ ์ €ํ•˜๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ์ฃผํŒŒ์ˆ˜ ๋ฒ”์œ„๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋‹ค์–‘ํ•œ ๋Œ€์—ญํญ๊ณผ ์ƒ˜ํ”Œ๋ง ์ฃผํŒŒ์ˆ˜์— ๋”ฐ๋ผ ๋ณดํ–‰ ํ•ญ๋ฒ• ์‹œ์Šคํ…œ์˜ ์œ„์น˜ ์ถ”์ • ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์—ฌ ์ œ์•ˆํ•œ ์ฃผํŒŒ์ˆ˜ ๋ฒ”์œ„์˜ ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•œ๋‹ค.There is a high interest in technologies that provide various services based on personal location. These service is called personal navigation system (PNS), and it is used in a variety of fields such as providing location information during the mission of firefighters or soldiers, and providing customers location in shopping malls. Pedestrian dead reckoning (PDR), a personal navigation system, uses an inertial sensor to estimate the position of a pedestrian. PDR with foot-mounted IMU is based on inertial navigation system (INS). In order to reduce the estimation error caused by gyro and accelerometer bias and white noise, INS is combined with zero-velocity update (ZUPT). The ZUPT assumes that the velocity of the pedestrian shoe is zero in the stance phase. Error due to bias and white noise can be reduced by using ZUPT, but error still remain due to other factors. The movement of the shoe during walking is represented by various frequency components. In particular, the gyro and accelerometer signal change suddenly and contain high-frequency components in the heel-strike, when the impact occurs as the shoe touches the ground. The IMU determines the frequency range that can be measured by the bandwidth and the sampling rate. If the bandwidth or sampling rate is narrow, the frequency components exceeding boundary can not measured and position error occurs because the measurement accuracy is lowered. In this paper, I propose a frequency range to analyze the signal measured by the sensor during the gait cycle and to prevent the degradation of the accuracy of the signal. The validity of the proposed frequency range is verified by comparing the position estimation performance of the PDR system with various bandwidth and sampling rate.1. ์„œ ๋ก  1 1.1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2. ์—ฐ๊ตฌ ๋ชฉ์  ๋ฐ ๋‚ด์šฉ 4 2. ๋ณดํ–‰ ํ•ญ๋ฒ• ์‹œ์Šคํ…œ 6 2.1. ์„œ๋ก  6 2.2. ์ ๋ถ„ ๊ธฐ๋ฐ˜ ๋ณดํ–‰ ํ•ญ๋ฒ• 7 2.2.1. ์ŠคํŠธ๋žฉ๋‹ค์šด ๊ด€์„ฑ ํ•ญ๋ฒ• 9 2.2.2. ํ™•์žฅ ์นผ๋งŒ ํ•„ํ„ฐ 15 2.2.3. INS-EKF-ZUPT 18 2.3. ์ผ๋ฐ˜์ ์ธ ๋ณดํ–‰ ํ•ญ๋ฒ• ์‹œ์Šคํ…œ์˜ ํ•œ๊ณ„ 24 2.3.1. ๋ถˆ์ถฉ๋ถ„ํ•œ ์„ผ์„œ ๋Œ€์—ญํญ 25 3. ์„ผ์„œ ๋Œ€์—ญํญ๊ณผ ์ƒ˜ํ”Œ๋ง ์ฃผํŒŒ์ˆ˜์— ๋Œ€ํ•œ ๋ณดํ–‰ ํ•ญ๋ฒ•์˜ ์„ฑ๋Šฅ 27 3.1. ๋ณดํ–‰์ž ๋™์ž‘์˜ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„ 27 3.1.1. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์„ ์œ„ํ•œ ์‹คํ—˜ ํ™˜๊ฒฝ 27 3.1.2. ์—๋„ˆ์ง€ ์ŠคํŽ™ํŠธ๋Ÿผ์˜ ๋ˆ„์  ๋ถ„ํฌ 30 3.1.3. ๋‹จ์‹œ๊ฐ„ ํ‘ธ๋ฆฌ์— ๋ณ€ํ™˜ 36 3.2. ์„ผ์„œ ๋Œ€์—ญํญ๊ณผ ์ƒ˜ํ”Œ๋ง ์ฃผํŒŒ์ˆ˜์— ๋Œ€ํ•œ ๋ณดํ–‰ ํ•ญ๋ฒ•์˜ ์„ฑ๋Šฅ ๋น„๊ต 41 3.2.1. ์„ฑ๋Šฅ ๋น„๊ต๋ฅผ ์œ„ํ•œ ์‹คํ—˜ ํ™˜๊ฒฝ 41 3.2.2. ๋Œ€์—ญํญ์ด ๋ณดํ–‰ ํ•ญ๋ฒ• ์‹œ์Šคํ…œ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 43 3.2.3. ์ƒ˜ํ”Œ๋ง ์ฃผํŒŒ์ˆ˜๊ฐ€ ๋ณดํ–‰ ํ•ญ๋ฒ• ์‹œ์Šคํ…œ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 45 3.3. ์š”์•ฝ 47 4. ๊ฒฐ๋ก  49 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 52 ABSTRACT 59Maste

    An Intelligent In-Shoe System for Gait Monitoring and Analysis with Optimized Sampling and Real-Time Visualization Capabilities

    Get PDF
    The deterioration of gait can be used as a biomarker for ageing and neurological diseases. Continuous gait monitoring and analysis are essential for early deficit detection and personalized rehabilitation. The use of mobile and wearable inertial sensor systems for gait monitoring and analysis have been well explored with promising results in the literature. However, most of these studies focus on technologies for the assessment of gait characteristics, few of them have considered the data acquisition bandwidth of the sensing system. Inadequate sampling frequency will sacrifice signal fidelity, thus leading to an inaccurate estimation especially for spatial gait parameters. In this work, we developed an inertial sensor based in-shoe gait analysis system for real-time gait monitoring and investigated the optimal sampling frequency to capture all the information on walking patterns. An exploratory validation study was performed using an optical motion capture system on four healthy adult subjects, where each person underwent five walking sessions, giving a total of 20 sessions. Percentage mean absolute errors (MAE) obtained in stride time, stride length, stride velocity, and cadence while walking were 1.19, 1.68, 2.08, and 1.23, respectively. In addition, an eigenanalysis based graphical descriptor from raw gait cycle signals was proposed as a new gait metric that can be quantified by principal component analysis to differentiate gait patterns, which has great potential to be used as a powerful analytical tool for gait disorder diagnostics

    Optimal sampling frequency and bias error modeling for foot-mounted IMUs

    No full text

    Constructing a reference standard for sports science and clinical movement sets using IMU-based motion capture technology

    Get PDF
    Motion analysis has improved greatly over the years through the development of low-cost inertia sensors. Such sensors have shown promising accuracy for both sport and medical applications, facilitating the possibility of a new reference standard to be constructed. Current gold standards within motion capture, such as high-speed camera-based systems and image processing, are not suitable for many movement-sets within both sports science and clinical movement analysis due to restrictions introduced by the movement sets. These restrictions include cost, portability, local environment constraints (such as light level) and poor line of sight accessibility. This thesis focusses on developing a magnetometer-less IMU-based motion capturing system to detect and classify two challenging movement sets: Basic stances during a Shaolin Kung Fu dynamic form, and severity levels from the modified UPDRS (Unified Parkinsonโ€™s Disease Rating Scale) analysis tapping exercise. This project has contributed three datasets. The Shaolin Kung Fu dataset is comprised of 5 dynamic movements repeated over 350 times by 8 experienced practitioners. The dataset was labelled by a professional Shaolin Kung Fu master. Two modified UPDRS datasets were constructed, one for each of the two locations measured. The modified UPDRS datasets comprised of 5 severity levels each with 100 self-emulated movement samples. The modified UPDRS dataset was labelled by a researcher in neuropsychological assessment. The errors associated with IMU systems has been reduced significantly through a combination of a Complementary filter and applying the constraints imposed by the range of movements available in human joints. Novel features have been extracted from each dataset. A piecewise feature set based on a moving window approach has been applied to the Shaolin Kung Fu dataset. While a combination of standard statistical features and a Durbin Watson analysis has been extracted from the modified UPDRS measurements. The project has also contributed a comparison of 24 models has been done on all 3 datasets and the optimal model for each dataset has been determined. The resulting models were commensurate with current gold standards. The Shaolin Kung Fu dataset was classified with the computational costly fine decision tree algorithm using 400 splits, resulting in: an accuracy of 98.9%, a precision of 96.9%, a recall value of 99.1%, and a F1-score of 98.0%. A novel approach of using sequential forward feature analysis was used to determine the minimum number of IMU devices required as well as the optimal number of IMU devices. The modified UPDRS datasets were then classified using a support vector machine algorithm requiring various kernels to achieve their highest accuracies. The measurements were repeated with a sensor located on the wrist and finger, with the wrist requiring a linear kernel and the finger a quadratic kernel. Both locations achieved an accuracy, precision, recall, and F1-score of 99.2%. Additionally, the project contributed an evaluation to the effect sensor location has on the proposed models. It was concluded that the IMU-based system has the potential to construct a reference standard both in sports science and clinical movement analysis. Data protection security and communication speeds were limitations in the system constructed due to the measured data being transferred from the devices via Bluetooth Low Energy communication. These limitations were considered and evaluated in the future works of this project

    Wearable-Based pedestrian localization through fusjon of inertial sensor measurements

    Get PDF
    Hoy en dรญa existe una gran demanda de sistemas de navegaciรณn personales integrados en servicios como gestiรณn de desastres para personal de rescate. Tambiรฉn se demandan sistemas de navegaciรณn personales como guรญa en grandes superficies, por ejemplo, hospitales, aeropuertos o centros comerciales. En esta tesis doctoral los escenarios estudiados son interiores y urbanos. La navegaciรณn se realiza por medio de sensores inerciales y magnรฉticos, idรณneos por su amplia difusiรณn, tamaรฑo y peso reducido y porque no necesitan infraestructura. Se llevarรกn a cabo investigaciones para mejorar los algoritmos de navegaciรณn ya existentes y cubrir determinados aspectos aรบn no resueltos. En primer lugar se ha llevado a cabo un extenso anรกlisis sobre los beneficios de usar medidas magnรฉticas para compensar los errores sistemรกticos de los sensores inerciales, asรญ como su efecto en la estimaciรณn de la orientaciรณn. Para ello se han usado medidas de referencia con valores de error conocidos combinando diferentes distribuciones de campos magnรฉticos. Los resultados obtenidos quedan respaldados con medidas realizadas con sensores reales de medio coste. Se ha concluido que el uso de medidas magnรฉticas es beneficioso porque acota errores en la orientaciรณn. Sin embargo, los escenarios bajo estudio suelen presentar campos magnรฉticos perturbados, lo que provoca que el proceso de estimaciรณn de errores sea prohibitivamente largo. En esta tesis doctoral se proponen algoritmos alternativos para el cรกlculo del desplazamiento horizontal del usuario, que han sido comparados con respecto a los ya existentes, ofreciendo los propuestos un mejor rendimiento. Ademรกs se incluye un innovador algoritmo para calcular el desplazamiento vertical del usuario, haciendo por primera vez posible obtener trayectorias en 3D usando solamente sensores inerciales no colocados en el zapato. Por รบltimo se propone un novedoso algoritmo capaz de prevenir errores de posiciรณn provocados por errores de rumbo. El algoritmo estรก basado en puntos de referencia automรกticamente detectados por medio de medidas inerciales. Los puntos de referencia elegidos para los escenarios cubiertos son escaleras y esquinas, que al revisitarse permiten calcular el error acumulado en la trayectoria. Este error es compensado consiguiendo asรญ acotar el error de rumbo. Este algoritmo ha sido extensamente probado con medidas de referencia y medidas realizadas con sensores reales de medio coste. La compensaciรณn de este error se adapta a las caracterรญsticas del sistema de navegaciรณn personal

    Advances in Human Factors in Wearable Technologies and Game Design

    Get PDF
    corecore