11 research outputs found

    On the Performance of the Relay-ARQ Networks

    Full text link
    This paper investigates the performance of relay networks in the presence of hybrid automatic repeat request (ARQ) feedback and adaptive power allocation. The throughput and the outage probability of different hybrid ARQ protocols are studied for independent and spatially-correlated fading channels. The results are obtained for the cases where there is a sum power constraint on the source and the relay or when each of the source and the relay are power-limited individually. With adaptive power allocation, the results demonstrate the efficiency of relay-ARQ techniques in different conditions.Comment: Accepted for publication in IEEE Trans. Veh. Technol. 201

    Performance Analysis and Cooperation Mode Switch in HARQ-based Relaying

    Get PDF
    We study the optimal, in terms of power-limited outage probability (OP), placement of the relay and investigate the effect of relay placement on the optimal cooperation mode of the source and the relay nodes. Using hybrid automatic repeat request (HARQ) based relaying techniques, general expressions for the OP and the average transmit power are derived. The results are then particularized to the repetition time diversity (RTD) protocol. The analytical expressions are used to find the transmit powers minimizing the power-limited OP. Our results demonstrate that adaptive power allocation reduces the OP significantly. For instance, consider a Rayleigh fading channel, an OP of 10^-3 and a maximum of 2 RTD-based retransmissions. Then, compared to equal power allocation, the required transmission signal-to-noise ratio (SNR) is reduced by 5 dB, if adaptive power allocation is utilized. Another important observation is that, depending on the relay positions and the total power budget, the system should switch between the single-node transmission mode and the joint transmission mode, in order to minimize the outage probability

    Cross-layer hybrid automatic repeat request error control with turbo processing for wireless system

    Get PDF
    The increasing demand for wireless communication system requires an efficient design in wireless communication system. One of the main challenges is to design error control mechanism in noisy wireless channel. Forward Error Correction (FEC) and Automatic Repeat reQuest (ARQ) are two main error control mechanisms. Hybrid ARQ allows the use of either FEC or ARQ when required. The issues with existing Hybrid ARQ are reliability, complexity and inefficient design. Therefore, the design of Hybrid ARQ needs to be further improved in order to achieve performance close to the Shannon capacity. The objective of this research is to develop a Cross-Layer Design Hybrid ARQ defined as CLD_ARQ to further minimize error in wireless communication system. CLD_ARQ comprises of three main stages. First, a low complexity FEC defined as IRC_FEC for error detection and correction has been developed by using Irregular Repetition Code (IRC) with Turbo processing. The second stage is the enhancement of IRC_FEC defined as EM_IRC_FEC to improve the reliability of error detection by adopting extended mapping. The last stage is the development of efficient CLD_ARQ to include retransmission for error correction that exploits EM_IRC_FEC and ARQ. In the proposed design, serial iterative decoding and parallel iterative decoding are deployed in the error detection and correction. The performance of the CLD_ARQ is evaluated in the Additive White Gaussian Noise (AWGN) channel using EXtrinsic Information Transfer (EXIT) chart, bit error rate (BER) and throughput analysis. The results show significant Signal-to-Noise Ratio (SNR) gain from the theoretical limit at BER of 10-5. IRC_FEC outperforms Recursive Systematic Convolutional Code (RSCC) by SNR gain up to 7% due to the use of IRC as a simple channel coding code. The usage of CLD_ARQ enhances the SNR gain by 53% compared to without ARQ due to feedback for retransmission. The adoption of extended mapping in the CLD_ARQ improves the SNR gain up to 50% due to error detection enhancement. In general, the proposed CLD_ARQ can achieve low BER and close to the Shannon‘s capacity even in worse channel condition

    Time diversity solutions to cope with lost packets

    Get PDF
    A dissertation submitted to Departamento de Engenharia Electrotécnica of Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engenharia Electrotécnica e de ComputadoresModern broadband wireless systems require high throughputs and can also have very high Quality-of-Service (QoS) requirements, namely small error rates and short delays. A high spectral efficiency is needed to meet these requirements. Lost packets, either due to errors or collisions, are usually discarded and need to be retransmitted, leading to performance degradation. An alternative to simple retransmission that can improve both power and spectral efficiency is to combine the signals associated to different transmission attempts. This thesis analyses two time diversity approaches to cope with lost packets that are relatively similar at physical layer but handle different packet loss causes. The first is a lowcomplexity Diversity-Combining (DC) Automatic Repeat reQuest (ARQ) scheme employed in a Time Division Multiple Access (TDMA) architecture, adapted for channels dedicated to a single user. The second is a Network-assisted Diversity Multiple Access (NDMA) scheme, which is a multi-packet detection approach able to separate multiple mobile terminals transmitting simultaneously in one slot using temporal diversity. This thesis combines these techniques with Single Carrier with Frequency Division Equalizer (SC-FDE) systems, which are widely recognized as the best candidates for the uplink of future broadband wireless systems. It proposes a new NDMA scheme capable of handling more Mobile Terminals (MTs) than the user separation capacity of the receiver. This thesis also proposes a set of analytical tools that can be used to analyse and optimize the use of these two systems. These tools are then employed to compare both approaches in terms of error rate, throughput and delay performances, and taking the implementation complexity into consideration. Finally, it is shown that both approaches represent viable solutions for future broadband wireless communications complementing each other.Fundação para a Ciência e Tecnologia - PhD grant(SFRH/BD/41515/2007); CTS multi-annual funding project PEst-OE/EEI/UI0066/2011, IT pluri-annual funding project PEst-OE/EEI/LA0008/2011, U-BOAT project PTDC/EEATEL/ 67066/2006, MPSat project PTDC/EEA-TEL/099074/2008 and OPPORTUNISTICCR project PTDC/EEA-TEL/115981/200

    Energy-efficient cooperative resource allocation for OFDMA

    Get PDF
    Energy is increasingly becoming an exclusive commodity in next generation wireless communication systems, where even in legacy systems, the mobile operators operational expenditure is largely attributed to the energy bill. However, as the amount of mobile traffic is expected to double over the next decade as we enter the Next Generation communications era, the need to address energy efficient protocols will be a priority. Therefore, we will need to revisit the design of the mobile network in order to adopt a proactive stance towards reducing the energy consumption of the network. Future emerging communication paradigms will evolve towards Next Generation mobile networks, that will not only consider a new air interface for high broadband connectivity, but will also integrate legacy communications (LTE/LTE-A, IEEE 802.11x, among others) networks to provide a ubiquitous communication platform, and one that can host a multitude of rich services and applications. In this context, one can say that the radio access network will predominantly be OFDMA based, providing the impetus for further research studies on how this technology can be further optimized towards energy efficiency. In fact, advanced approaches towards both energy and spectral efficient design will still dominate the research agenda. Taking a step towards this direction, LTE/LTE-A (Long Term Evolution-Advanced) have already investigated cooperative paradigms such as SON (self-Organizing Networks), Network Sharing, and CoMP (Coordinated Multipoint) transmission. Although these technologies have provided promising results, some are still in their infancy and lack an interdisciplinary design approach limiting their potential gain. In this thesis, we aim to advance these future emerging paradigms from a resource allocation perspective on two accounts. In the first scenario, we address the challenge of load balancing (LB) in OFDMA networks, that is employed to redistribute the traffic load in the network to effectively use spectral resources throughout the day. We aim to reengineer the load-balancing (LB) approach through interdisciplinary design to develop an integrated energy efficient solution based on SON and network sharing, what we refer to as SO-LB (Self-Organizing Load balancing). Obtained simulation results show that by employing SO-LB algorithm in a shared network, it is possible to achieve up to 15-20% savings in energy consumption when compared to LTE-A non-shared networks. The second approach considers CoMP transmission, that is currently used to enhance cell coverage and capacity at cell edge. Legacy approaches mainly consider fundamental scheduling policies towards assigning users for CoMP transmission. We build on these scheduling approaches towards a cross-layer design that provide enhanced resource utilization, fairness, and energy saving whilst maintaining low complexity, in particular for broadband applications

    Estratégias de design de camada intermédia e cooperativa para redes sem fios energeticamente eficientes

    Get PDF
    Doutoramento conjunto MAP-i em InformáticaThe promise of a truly mobile experience is to have the freedom to roam around anywhere and not be bound to a single location. However, the energy required to keep mobile devices connected to the network over extended periods of time quickly dissipates. In fact, energy is a critical resource in the design of wireless networks since wireless devices are usually powered by batteries. Furthermore, multi-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the bene ts gained from multiple interfaces come at a cost in terms of energy consumption having profound e ect on the mobile battery lifetime and standby time. This concern is rea rmed by the fact that battery lifetime is one of the top reasons why consumers are deterred from using advanced multimedia services on their mobile on a frequent basis. In order to secure market penetration for next generation services energy e ciency needs to be placed at the forefront of system design. However, despite recent e orts, energy compliant features in legacy technologies are still in its infancy, and new disruptive architectures coupled with interdisciplinary design approaches are required in order to not only promote the energy gain within a single protocol layer, but to enhance the energy gain from a holistic perspective. A promising approach is cooperative smart systems, that in addition to exploiting context information, are entities that are able to form a coalition and cooperate in order to achieve a common goal. Migrating from this baseline, this thesis investigates how these technology paradigm can be applied towards reducing the energy consumption in mobile networks. In addition, we introduce an additional energy saving dimension by adopting an interlayer design so that protocol layers are designed to work in synergy with the host system, rather than independently, for harnessing energy. In this work, we exploit context information, cooperation and inter-layer design for developing new energy e cient and technology agnostic building blocks for mobile networks. These technology enablers include energy e cient node discovery and short-range cooperation for energy saving in mobile handsets, complemented by energy-aware smart scheduling for promoting energy saving on the network side. Analytical and simulations results were obtained, and veri ed in the lab on a real hardware testbed. Results have shown that up to 50% energy saving could be obtained.A promessa de uma experiência realmente móvel é de ter a liberdade de deambular por qualquer sítio e não estar preso a um único local. No entanto, a energia requerida para manter dispositivos móveis conectados à rede, num período extenso de tempo, o mesmo rapidamente se dissipa. Na realidade, a energia é um recurso crítico no design de redes sem fios, uma vez que esses dispositivos são alimentados por baterias. Para além disso, dispositivos móveis multi-standard permitem que os utilizadores desfrutem de elevadas taxas de dados com conectividade omnipresente. No entanto, as vantagens adquiridas pelas múltiplas interfaces, imputa uma despesa, sendo essa um consumo maior de energia, numa era onde os dispositivos móveis têm de ser energicamente complacentes. Esta preocupação é reafirmada pelo facto de que a vida da bateria é uma das principais razões que impede os utilizadores de usufruir e utilizar de serviços de multimédia mais avançados nos seus dispositivos, numa base frequente. De forma a assegurar a entrada no mercado para serviços da próxima geração, eficiência energética tem de ser colocada na vanguarda do design de sistemas. No entanto, apesar de esforços recentes, funcionalidades que cumpram os requisitos energéticos em tecnologias "legacy" ainda estão nos seus primórdios e novas abordagens disruptivas são requeridas, juntamente com abordagem de design interdisciplinar, de forma a aproveitar a poupança energética das diversas camadas protocolares. Uma bordagem promissora são os sistemas de cooperação inteligente, que exploram não são contexto da informação, mas também as entidades que são igualmente capazes de formar uma coligação e cooperam de forma a atingir um objectivo comum. Migrar a partir destas referências, esta tese investiga como é que este paradigma tecnológico pode ser aplicado para reduzir a potência e consumo de energia em redes móveis. Para além disso, introduzimos uma dimensão de poupança energética adicional, para adopção de design de camadas intermédias, de forma a que as camadas de protocolos sejam concebidas para trabalhar em sinergia com o sistema anfitrião, ao invés de independentemente, para aproveitamento de energia. Neste trabalho, nós exploramos o contexto da informação, cooperação e design de camadas intermédias para desenvolver blocos de construção energicamente eficientes e tecnologias agnósticas para redes móveis. Estes habilitadores (enablers) tecnológicos incluem um nó de descoberta de energia eficiente e cooperação de curto alcance para poupança energética em aparelhos móveis, complementado com agendamento inteligente, energicamente consciente, de forma a promover a poupança de energia do lado da rede. Analiticamente e simultaneamente, foram obtidos resultados e verificados em laboratório, num modelo de hardware protótipo. Resultados demonstram que pode ser obtido uma poupança energética acima dos 50%

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&

    Sustainable scheduling policies for radio access networks based on LTE technology

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyIn the LTE access networks, the Radio Resource Management (RRM) is one of the most important modules which is responsible for handling the overall management of radio resources. The packet scheduler is a particular sub-module which assigns the existing radio resources to each user in order to deliver the requested services in the most efficient manner. Data packets are scheduled dynamically at every Transmission Time Interval (TTI), a time window used to take the user’s requests and to respond them accordingly. The scheduling procedure is conducted by using scheduling rules which select different users to be scheduled at each TTI based on some priority metrics. Various scheduling rules exist and they behave differently by balancing the scheduler performance in the direction imposed by one of the following objectives: increasing the system throughput, maintaining the user fairness, respecting the Guaranteed Bit Rate (GBR), Head of Line (HoL) packet delay, packet loss rate and queue stability requirements. Most of the static scheduling rules follow the sequential multi-objective optimization in the sense that when the first targeted objective is satisfied, then other objectives can be prioritized. When the targeted scheduling objective(s) can be satisfied at each TTI, the LTE scheduler is considered to be optimal or feasible. So, the scheduling performance depends on the exploited rule being focused on particular objectives. This study aims to increase the percentage of feasible TTIs for a given downlink transmission by applying a mixture of scheduling rules instead of using one discipline adopted across the entire scheduling session. Two types of optimization problems are proposed in this sense: Dynamic Scheduling Rule based Sequential Multi-Objective Optimization (DSR-SMOO) when the applied scheduling rules address the same objective and Dynamic Scheduling Rule based Concurrent Multi-Objective Optimization (DSR-CMOO) if the pool of rules addresses different scheduling objectives. The best way of solving such complex optimization problems is to adapt and to refine scheduling policies which are able to call different rules at each TTI based on the best matching scheduler conditions (states). The idea is to develop a set of non-linear functions which maps the scheduler state at each TTI in optimal distribution probabilities of selecting the best scheduling rule. Due to the multi-dimensional and continuous characteristics of the scheduler state space, the scheduling functions should be approximated. Moreover, the function approximations are learned through the interaction with the RRM environment. The Reinforcement Learning (RL) algorithms are used in this sense in order to evaluate and to refine the scheduling policies for the considered DSR-SMOO/CMOO optimization problems. The neural networks are used to train the non-linear mapping functions based on the interaction among the intelligent controller, the LTE packet scheduler and the RRM environment. In order to enhance the convergence in the feasible state and to reduce the scheduler state space dimension, meta-heuristic approaches are used for the channel statement aggregation. Simulation results show that the proposed aggregation scheme is able to outperform other heuristic methods. When the aggregation scheme of the channel statements is exploited, the proposed DSR-SMOO/CMOO problems focusing on different objectives which are solved by using various RL approaches are able to: increase the mean percentage of feasible TTIs, minimize the number of TTIs when the RL approaches punish the actions taken TTI-by-TTI, and minimize the variation of the performance indicators when different simulations are launched in parallel. This way, the obtained scheduling policies being focused on the multi-objective criteria are sustainable. Keywords: LTE, packet scheduling, scheduling rules, multi-objective optimization, reinforcement learning, channel, aggregation, scheduling policies, sustainable
    corecore