5,438 research outputs found

    Association schemes related to universally optimal configurations, Kerdock codes and extremal Euclidean line-sets

    Full text link
    H. Cohn et. al. proposed an association scheme of 64 points in R^{14} which is conjectured to be a universally optimal code. We show that this scheme has a generalization in terms of Kerdock codes, as well as in terms of maximal real mutually unbiased bases. These schemes also related to extremal line-sets in Euclidean spaces and Barnes-Wall lattices. D. de Caen and E. R. van Dam constructed two infinite series of formally dual 3-class association schemes. We explain this formal duality by constructing two dual abelian schemes related to quaternary linear Kerdock and Preparata codes.Comment: 16 page

    QPSK Block-Modulation Codes for Unequal Error Protection

    Get PDF
    Unequal error protection (UEP) codes find applications in broadcast channels, as well as in other digital communication systems, where messages have different degrees of importance. Binary linear UEP (LUEP) codes combined with a Gray mapped QPSK signal set are used to obtain new efficient QPSK block-modulation codes for unequal error protection. Several examples of QPSK modulation codes that have the same minimum squared Euclidean distance as the best QPSK modulation codes, of the same rate and length, are given. In the new constructions of QPSK block-modulation codes, even-length binary LUEP codes are used. Good even-length binary LUEP codes are obtained when shorter binary linear codes are combined using either the well-known |u¯|u¯+v¯|-construction or the so-called construction X. Both constructions have the advantage of resulting in optimal or near-optimal binary LUEP codes of short to moderate lengths, using very simple linear codes, and may be used as constituent codes in the new constructions. LUEP codes lend themselves quite naturally to multistage decoding up to their minimum distance, using the decoding of component subcodes. A new suboptimal two-stage soft-decision decoding of LUEP codes is presented and its application to QPSK block-modulation codes for UEP illustrated

    Low Correlation Sequences over the QAM Constellation

    Full text link
    This paper presents the first concerted look at low correlation sequence families over QAM constellations of size M^2=4^m and their potential applicability as spreading sequences in a CDMA setting. Five constructions are presented, and it is shown how such sequence families have the ability to transport a larger amount of data as well as enable variable-rate signalling on the reverse link. Canonical family CQ has period N, normalized maximum-correlation parameter theta_max bounded above by A sqrt(N), where 'A' ranges from 1.8 in the 16-QAM case to 3.0 for large M. In a CDMA setting, each user is enabled to transfer 2m bits of data per period of the spreading sequence which can be increased to 3m bits of data by halving the size of the sequence family. The technique used to construct CQ is easily extended to produce larger sequence families and an example is provided. Selected family SQ has a lower value of theta_max but permits only (m+1)-bit data modulation. The interleaved 16-QAM sequence family IQ has theta_max <= sqrt(2) sqrt(N) and supports 3-bit data modulation. The remaining two families are over a quadrature-PAM (Q-PAM) subset of size 2M of the M^2-QAM constellation. Family P has a lower value of theta_max in comparison with Family SQ, while still permitting (m+1)-bit data modulation. Interleaved family IP, over the 8-ary Q-PAM constellation, permits 3-bit data modulation and interestingly, achieves the Welch lower bound on theta_max.Comment: 21 pages, 3 figures. To appear in IEEE Transactions on Information Theory in February 200

    Codes for Key Generation in Quantum Cryptography

    Full text link
    As an alternative to the usual key generation by two-way communication in schemes for quantum cryptography, we consider codes for key generation by one-way communication. We study codes that could be applied to the raw key sequences that are ideally obtained in recently proposed scenarios for quantum key distribution, which can be regarded as communication through symmetric four-letter channels.Comment: IJQI format, 13 pages, 1 tabl

    Convolutional and tail-biting quantum error-correcting codes

    Full text link
    Rate-(n-2)/n unrestricted and CSS-type quantum convolutional codes with up to 4096 states and minimum distances up to 10 are constructed as stabilizer codes from classical self-orthogonal rate-1/n F_4-linear and binary linear convolutional codes, respectively. These codes generally have higher rate and less decoding complexity than comparable quantum block codes or previous quantum convolutional codes. Rate-(n-2)/n block stabilizer codes with the same rate and error-correction capability and essentially the same decoding algorithms are derived from these convolutional codes via tail-biting.Comment: 30 pages. Submitted to IEEE Transactions on Information Theory. Minor revisions after first round of review
    corecore