6 research outputs found

    Cost-aware real-time divisible loads scheduling in cloud computing

    Get PDF
    Cloud computing has become an important alternative for solving large scale resource intensive problems in science, engineering, and analytics. Resource management play an important role in improving the quality of service (QoS). This paper is concerned with the investigation of scheduling strategies for divisible loads with deadlines constraints upon heterogeneous processors in a cloud computing environment. The workload allocation approach presents in this paper is using Divisible Load Theory (DLT). It is based on the fact that the computation can be partitioned into some arbitrary sizes and each partition can be processed independently of each other. Through series of simulation against the baseline strategies, it can be found that the worker selection order in the service pool and the amount of fraction load assigned to each of them have significant effects on the total computation cost.Keywords: Cloud computing, Divisible Load Theory (DLT), Cost, Quality-of-service (QoS

    Cost Minimization of Virtual Machine Allocation in Public Clouds Considering Multiple Applications

    Get PDF
    International Conference, GECON 2017 (14. 2017. Biarritz)This paper presents a virtual machine (VM) allocation strategy to optimize the cost of VM deployments in public clouds. It can simultaneously deal with multiple applications and it is formulated as an optimization problem that takes the level of performance to be reached by a set of applications as inputs. It considers real characteristics of infrastructure providers such as VM types, limits on the number VMs that can be deployed, and pricing schemes. As output, it generates a VM allocation to support the performance requirements of all the applications. The strategy combines short-term and long-term allocation phases in order to take advantage of VMs belonging to two different pricing categories: on-demand and reserved. A quantization technique is introduced to reduce the size of the allocation problem and, thus, significantly decrease the computational complexity. The experiments show that the strategy can optimize costs for problems that could not be solved with previous approache

    Optimal Cost for Time-Aware Cloud Resource Allocation in Business Process

    Get PDF
    Cloud Computing infrastructures are being increasingly used for running business process activities due to its high performance level and low operating cost. The enterprise QoS requirements are diverse and different resources are offered by Cloud providers in various QoS-based pricing strategies. Furthermore, business process activities are constrained by hard timing constraints and if they are not executed correctly the enterprise will pay penalties costs. Therefore, finding the optimal Cloud resources allocation for a business process becomes a highly challenging problem. While optimizing the Cloud resource allocation cost, it is important to respect activities QoS requirements and temporal constraints and Cloud pricing strategies constraints. The aim of the present paper is to offer a method that assists users finding the optimal pricing strategy for Cloud resource used by business process activities. Basically, we use a binary/(0-1) linear program with an objective function under a set of constraints. In order to show its feasibility, our approach has been implemented and the results of our experiments highlight the effectiveness of our proposed solution

    Optimal provisioning for scheduling divisible loads with reserved cloud resources

    No full text
    10.1109/ICON.2012.6506559IEEE International Conference on Networks, ICON204-20

    Resource Management In Cloud And Big Data Systems

    Get PDF
    Cloud computing is a paradigm shift in computing, where services are offered and acquired on demand in a cost-effective way. These services are often virtualized, and they can handle the computing needs of big data analytics. The ever-growing demand for cloud services arises in many areas including healthcare, transportation, energy systems, and manufacturing. However, cloud resources such as computing power, storage, energy, dollars for infrastructure, and dollars for operations, are limited. Effective use of the existing resources raises several fundamental challenges that place the cloud resource management at the heart of the cloud providers\u27 decision-making process. One of these challenges faced by the cloud providers is to provision, allocate, and price the resources such that their profit is maximized and the resources are utilized efficiently. In addition, executing large-scale applications in clouds may require resources from several cloud providers. Another challenge when processing data intensive applications is minimizing their energy costs. Electricity used in US data centers in 2010 accounted for about 2% of total electricity used nationwide. In addition, the energy consumed by the data centers is growing at over 15% annually, and the energy costs make up about 42% of the data centers\u27 operating costs. Therefore, it is critical for the data centers to minimize their energy consumption when offering services to customers. In this Ph.D. dissertation, we address these challenges by designing, developing, and analyzing mechanisms for resource management in cloud computing systems and data centers. The goal is to allocate resources efficiently while optimizing a global performance objective of the system (e.g., maximizing revenue, maximizing social welfare, or minimizing energy). We improve the state-of-the-art in both methodologies and applications. As for methodologies, we introduce novel resource management mechanisms based on mechanism design, approximation algorithms, cooperative game theory, and hedonic games. These mechanisms can be applied in cloud virtual machine (VM) allocation and pricing, cloud federation formation, and energy-efficient computing. In this dissertation, we outline our contributions and possible directions for future research in this field
    corecore