40,009 research outputs found

    Black hole optimizer for the optimal power injection in distribution networks using DG

    Get PDF
    The optimal sizing of Distributed Generators (DG) in electric power distribution networks is carried out through a metaheuristic optimization strategy. To size DG it is proposed an optimal power flow model is formulated by considering that the location of these sources has been previously defined by the distribution company. The solution of the optimal power flow is reached with the Black Hole Optimizer (BHO). A methodology is used master-slave optimization methodology, where the BHO (i.e., master stage) defines the sizes of the DG and the slave stage evaluates the objective function with a load flow algorithm, this work using the triangular-based power flow method. Numerical results in the 33-node and the 69-node test system demonstrates the effectiveness and robustness of the proposed approach when compared with literature results. © 2021 Institute of Physics Publishing. All rights reserved

    A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks

    Get PDF
    This paper proposes a convex approximation approach for solving the optimal power flow (OPF) problem in direct current (DC) networks with constant power loads by using a sequential quadratic programming approach. A linearization method based on the Taylor series is used for the convexification of the power balance equations. For selecting the best candidate nodes for optimal location of distributed generators (DGs) on a DC network, a relaxation of the binary variables that represent the DGs location is proposed. This relaxation allows identifying the most important nodes for reducing power losses as well as the unimportant nodes. The optimal solution obtained by the proposed convex model is the best possible solution and serves for adjusting combinatorial optimization techniques for recovering the binary characteristics of the decision variables. The solution of the non-convex OPF model is achieved via GAMS software in conjunction with the CONOPT solver; in addition the sequential quadratic programming model is solved via quadprog from MATLAB for reducing the estimation errors in terms of calculation of the power losses. To compare the results of the proposed convex model, three metaheuristic approaches were employed using genetic algorithms, particle swarm optimization, continuous genetic algorithms, and black hole optimizers. © 2019 Karabuk UniversityUniversidad Tecnológica de Pereira, UTP: C2018P020, Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS, Department of Science, Information Technology and Innovation, Queensland Government, DSIT

    Optimal Phase-Balancing in Three-Phase Distribution Networks Considering Shunt Reactive Power Compensation with Fixed-Step Capacitor Banks

    Get PDF
    The black hole optimization (BHO) method is applied in this research to solve the problem of the optimal reactive power compensation with fixed-step capacitor banks in three-phase networks considering the phase-balancing problem simultaneously. A master–slave optimization approach based on the BHO in the master stage considers a discrete codification and the successive approximation power flow method in the slave stage. Two different evaluations are proposed to measure the impact of the shunt reactive power compensation and the phase-balancing strategies. These evaluations include a cascade solution methodology (CSM) approach and a simultaneous solution methodology (SSM). The CSM approach solves the phase-balancing problem in the first stage. This solution is implemented in the distribution network to determine the fixed-step capacitor banks installed in the second stage. In the SSM, both problems are solved using a unique codification vector. Numerical results in the IEEE 8- and IEEE 27-bus systems demonstrate the effectiveness of the proposed solution methodology, where the SSM presents the better numerical results in both test feeders with reductions of about (Formula presented.) and (Formula presented.), respectively, when compared with the CSM. To validate all the numerical achievements in the MATLAB programming environment, the DIgSILENT software was used for making cross-validations. Note that the selection of the DIgISLENT software is based on its wide recognition in the scientific literature and industry for making quasi-experimental validations as a previous stage to the physical implementation of any grid intervention in power and distribution networks. © 2022 by the authors

    Liquids-Rich Shale Evaluation: Modelling and Optimization of Hydraulically Fractured Liquids-Rich Shale Wells

    Get PDF
    Imperial Users onl

    Geometric Design and Stability of Power Networks

    Full text link
    From the perspective of the network theory, the present work illustrates how the parametric intrinsic geometric description exhibits an exact set of pair correction functions and global correlation volume with and without the inclusion of the imaginary power flow. The Gaussian fluctuations about the equilibrium basis accomplish a well-defined, non-degenerate, curved regular intrinsic Riemannian surfaces for the purely real and the purely imaginary power flows and their linear combinations. An explicit computation demonstrates that the underlying real and imaginary power correlations involve ordinary summations of the power factors, with and without their joint effects. Novel aspect of the intrinsic geometry constitutes a stable design for the power systems.Comment: 23 pages, 11 figures, Keywords: Correlation; Geometry; Power Flow; Network; Stabilit

    Ultra Low Specific Contact Resistivity in Metal-Graphene Junctions via Atomic Orbital Engineering

    Full text link
    A systematic investigation of graphene edge contacts is provided. Intentionally patterning monolayer graphene at the contact region creates well-defined edge contacts that lead to a 67% enhancement in current injection from a gold contact. Specific contact resistivity is reduced from 1372 {\Omega}m for a device with surface contacts to 456 {\Omega}m when contacts are patterned with holes. Electrostatic doping of the graphene further reduces contact resistivity from 519 {\Omega}m to 45 {\Omega}m, a substantial decrease of 91%. The experimental results are supported and understood via a multi-scale numerical model, based on density-functional-theory calculations and transport simulations. The data is analyzed with regards to the edge perimeter and hole-to-graphene ratio, which provides insights into optimized contact geometries. The current work thus indicates a reliable and reproducible approach for fabricating low resistance contacts in graphene devices. We provide a simple guideline for contact design that can be exploited to guide graphene and 2D material contact engineering.Comment: 26 page
    corecore