27,887 research outputs found

    A Novel Method for the Absolute Pose Problem with Pairwise Constraints

    Full text link
    Absolute pose estimation is a fundamental problem in computer vision, and it is a typical parameter estimation problem, meaning that efforts to solve it will always suffer from outlier-contaminated data. Conventionally, for a fixed dimensionality d and the number of measurements N, a robust estimation problem cannot be solved faster than O(N^d). Furthermore, it is almost impossible to remove d from the exponent of the runtime of a globally optimal algorithm. However, absolute pose estimation is a geometric parameter estimation problem, and thus has special constraints. In this paper, we consider pairwise constraints and propose a globally optimal algorithm for solving the absolute pose estimation problem. The proposed algorithm has a linear complexity in the number of correspondences at a given outlier ratio. Concretely, we first decouple the rotation and the translation subproblems by utilizing the pairwise constraints, and then we solve the rotation subproblem using the branch-and-bound algorithm. Lastly, we estimate the translation based on the known rotation by using another branch-and-bound algorithm. The advantages of our method are demonstrated via thorough testing on both synthetic and real-world dataComment: 10 pages, 7figure

    The removal of shear-ellipticity correlations from the cosmic shear signal: Influence of photometric redshift errors on the nulling technique

    Full text link
    Cosmic shear is regarded one of the most powerful probes to reveal the properties of dark matter and dark energy. To fully utilize its potential, one has to be able to control systematic effects down to below the level of the statistical parameter errors. Particularly worrisome in this respect is intrinsic alignment, causing considerable parameter biases via correlations between the intrinsic ellipticities of galaxies and the gravitational shear, which mimic lensing. In an earlier work we have proposed a nulling technique that downweights this systematic, only making use of its well-known redshift dependence. We assess the practicability of nulling, given realistic conditions on photometric redshift information. For several simplified intrinsic alignment models and a wide range of photometric redshift characteristics we calculate an average bias before and after nulling. Modifications of the technique are introduced to optimize the bias removal and minimize the information loss by nulling. We demonstrate that one of the presented versions is close to optimal in terms of bias removal, given high quality of photometric redshifts. For excellent photometric redshift information, i.e. at least 10 bins with a small dispersion, a negligible fraction of catastrophic outliers, and precise knowledge about the redshift distributions, one version of nulling is capable of reducing the shear-intrinsic ellipticity contamination by at least a factor of 100. Alternatively, we describe a robust nulling variant which suppresses the systematic signal by about 10 for a very broad range of photometric redshift configurations. Irrespective of the photometric redshift quality, a loss of statistical power is inherent to nulling, which amounts to a decrease of the order 50% in terms of our figure of merit.Comment: 26 pages, including 16 figures; minor changes to match accepted version; published in Astronomy and Astrophysic

    Extrinsic Parameter Calibration for Line Scanning Cameras on Ground Vehicles with Navigation Systems Using a Calibration Pattern

    Full text link
    Line scanning cameras, which capture only a single line of pixels, have been increasingly used in ground based mobile or robotic platforms. In applications where it is advantageous to directly georeference the camera data to world coordinates, an accurate estimate of the camera's 6D pose is required. This paper focuses on the common case where a mobile platform is equipped with a rigidly mounted line scanning camera, whose pose is unknown, and a navigation system providing vehicle body pose estimates. We propose a novel method that estimates the camera's pose relative to the navigation system. The approach involves imaging and manually labelling a calibration pattern with distinctly identifiable points, triangulating these points from camera and navigation system data and reprojecting them in order to compute a likelihood, which is maximised to estimate the 6D camera pose. Additionally, a Markov Chain Monte Carlo (MCMC) algorithm is used to estimate the uncertainty of the offset. Tested on two different platforms, the method was able to estimate the pose to within 0.06 m / 1.05∘^{\circ} and 0.18 m / 2.39∘^{\circ}. We also propose several approaches to displaying and interpreting the 6D results in a human readable way.Comment: Published in MDPI Sensors, 30 October 201

    Ground Profile Recovery from Aerial 3D LiDAR-based Maps

    Get PDF
    The paper presents the study and implementation of the ground detection methodology with filtration and removal of forest points from LiDAR-based 3D point cloud using the Cloth Simulation Filtering (CSF) algorithm. The methodology allows to recover a terrestrial relief and create a landscape map of a forestry region. As the proof-of-concept, we provided the outdoor flight experiment, launching a hexacopter under a mixed forestry region with sharp ground changes nearby Innopolis city (Russia), which demonstrated the encouraging results for both ground detection and methodology robustness.Comment: 8 pages, FRUCT-2019 conferenc
    • …
    corecore