7,569 research outputs found

    Neural-Attention-Based Deep Learning Architectures for Modeling Traffic Dynamics on Lane Graphs

    Full text link
    Deep neural networks can be powerful tools, but require careful application-specific design to ensure that the most informative relationships in the data are learnable. In this paper, we apply deep neural networks to the nonlinear spatiotemporal physics problem of vehicle traffic dynamics. We consider problems of estimating macroscopic quantities (e.g., the queue at an intersection) at a lane level. First-principles modeling at the lane scale has been a challenge due to complexities in modeling social behaviors like lane changes, and those behaviors' resultant macro-scale effects. Following domain knowledge that upstream/downstream lanes and neighboring lanes affect each others' traffic flows in distinct ways, we apply a form of neural attention that allows the neural network layers to aggregate information from different lanes in different manners. Using a microscopic traffic simulator as a testbed, we obtain results showing that an attentional neural network model can use information from nearby lanes to improve predictions, and, that explicitly encoding the lane-to-lane relationship types significantly improves performance. We also demonstrate the transfer of our learned neural network to a more complex road network, discuss how its performance degradation may be attributable to new traffic behaviors induced by increased topological complexity, and motivate learning dynamics models from many road network topologies.Comment: To appear at 2019 IEEE Conference on Intelligent Transportation System

    Tree Memory Networks for Modelling Long-term Temporal Dependencies

    Full text link
    In the domain of sequence modelling, Recurrent Neural Networks (RNN) have been capable of achieving impressive results in a variety of application areas including visual question answering, part-of-speech tagging and machine translation. However this success in modelling short term dependencies has not successfully transitioned to application areas such as trajectory prediction, which require capturing both short term and long term relationships. In this paper, we propose a Tree Memory Network (TMN) for modelling long term and short term relationships in sequence-to-sequence mapping problems. The proposed network architecture is composed of an input module, controller and a memory module. In contrast to related literature, which models the memory as a sequence of historical states, we model the memory as a recursive tree structure. This structure more effectively captures temporal dependencies across both short term and long term sequences using its hierarchical structure. We demonstrate the effectiveness and flexibility of the proposed TMN in two practical problems, aircraft trajectory modelling and pedestrian trajectory modelling in a surveillance setting, and in both cases we outperform the current state-of-the-art. Furthermore, we perform an in depth analysis on the evolution of the memory module content over time and provide visual evidence on how the proposed TMN is able to map both long term and short term relationships efficiently via a hierarchical structure

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    Neural network based vehicle-following model for mixed traffic conditions

    Get PDF
    Car-following behaviour is well studied and analyzed in the last fifty years for homogeneous traffic. However in the mixed traffic, following behaviour is found to vary based on type of lead and following vehicles. In this study, a neural network based model is proposed to predict the following behaviour for different lead and following vehicle-type combinations. Performance of the model is studied using data collected for six vehicle-type combinations. A multi-layer feed-forward back propagation network is used to predict vehicle-type dependent following behaviour by incorporating the vehicle- type as input into the model. The neural network model is then integrated into a simulation program to study the macroscopic behaviour of the model. Performance of the proposed neural network model is compared with the conventional Gipps‟ model at microscopic and macroscopic level. This study prompts the need for considering vehicle-type dependent following behaviour and ability of neural networks to model this behaviour in mixed traffic conditions
    • …
    corecore