8 research outputs found

    Server Structure Proposal and Automatic Verification Technology on IaaS Cloud of Plural Type Servers

    Get PDF
    In this paper, we propose a server structure proposal and automatic performance verification technology which proposes and verifies an appropriate server structure on Infrastructure as a Service (IaaS) cloud with baremetal servers, container based virtual servers and virtual machines. Recently, cloud services have been progressed and providers provide not only virtual machines but also baremetal servers and container based virtual servers. However, users need to design an appropriate server structure for their requirements based on 3 types quantitative performances and users need much technical knowledge to optimize their system performances. Therefore, we study a technology which satisfies users' performance requirements on these 3 types IaaS cloud. Firstly, we measure performances of a baremetal server, Docker containers, KVM (Kernel based Virtual Machine) virtual machines on OpenStack with virtual server number changing. Secondly, we propose a server structure proposal technology based on the measured quantitative data. A server structure proposal technology receives an abstract template of OpenStack Heat and function/performance requirements and then creates a concrete template with server specification information. Thirdly, we propose an automatic performance verification technology which executes necessary performance tests automatically on provisioned user environments according to the template.Comment: Evaluations of server structure proposal were insufficient in section

    Resource Provisioning for Multi-Tier Virtualized Server Applications

    Get PDF
    Virtualizing the x86-based data center creates a dynamic environment for server application deployment and resource sharing. Resource management in this environment is challenging as applications are under fluctuating workloads causing diverse resource demands across their tiers. Resource allocation adaptation is essential for high performance machine utilization. This paper presents feedback controllers that dynamically adjust the CPU allocations of multi-tier applications in order to adapt to workload changes by considering the resource coupling between utilizations of application components. Our experimental evaluation on a virtualized 3-tier Rubis server application shows that our techniques work effectively

    Optimal Multivariate Control for Differentiated Services on a Shared Hosting Platform

    No full text
    Abstract — Today’s shared hosting platforms often employ virtualization to allow multiple enterprise applications with time-varying resource demands to share a common infrastructure in order to improve resource utilization. Meeting application-level quality of service (QoS) goals becomes a challenge in such an environment as enterprise applications often have a multi-tier architecture and complex interactions and dependencies among individual tiers. In addition, when the shared infrastructure becomes overloaded, appropriate resource control needs to be performed at these individual tiers in a coordinated fashion in order to provide differentiated services to co-hosted applications. In this paper, we present an adaptive multivariate controller that dynamically adjusts the resource shares to individual tiers of multiple applications in order to meet a specified level of service differentiation. The controller parameters are automatically tuned at runtime based on a quadratic cost function and a system model that is learned online using a recursive least-squares (RLS) method. To evaluate our controller design, we built a testbed hosting two instances of the RUBiS application, a multi-tier online auction web site, using Xen virtual machines. Our results indicate that our controller is able to meet given QoS differentiation targets between co-hosted applications while the total demand from these applications exceeds the capacities of the shared systems. I

    Geospatial Data Indexing Analysis and Visualization via Web Services with Autonomic Resource Management

    Get PDF
    With the exponential growth of the usage of web-based map services, the web GIS application has become more and more popular. Spatial data index, search, analysis, visualization and the resource management of such services are becoming increasingly important to deliver user-desired Quality of Service. First, spatial indexing is typically time-consuming and is not available to end-users. To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on interactive maps to facilitate the user’s data analysis. Second, due to the highly complex and dynamic nature of GIS systems, it is quite challenging for the end users to quickly understand and analyze the spatial data, and to efficiently share their own data and analysis results with others. Built on the TerraFly Geo spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and can efficiently support many different visualization functions and spatial data analysis models. Furthermore, users can create unique URLs to visualize and share the analysis results. TerraFly GeoCloud also enables the MapQL technology to customize map visualization using SQL-like statements [10]. Third, map systems often serve dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it challenging to meet the response time targets of map requests while using the resources efficiently. Virtualization facilitates the deployment of web map services and improves their resource utilization through encapsulation and consolidation. Autonomic resource management allows resources to be automatically provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to predict the demand of map workloads online and optimize resource allocations, considering both response time and data freshness as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production web map service, and evaluated using real TerraFly workloads. The results show that v-TerraFly can accurately predict the workload demands: 18.91% more accurate; and efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared to traditional peak load-based resource allocation

    Fuzzy Modeling and Control Based Virtual Machine Resource Management

    Get PDF
    Virtual machines (VMs) are powerful platforms for building agile datacenters and emerging cloud systems. However, resource management for a VM-based system is still a challenging task. First, the complexity of application workloads as well as the interference among competing workloads makes it difficult to understand their VMs’ resource demands for meeting their Quality of Service (QoS) targets; Second, the dynamics in the applications and system makes it also difficult to maintain the desired QoS target while the environment changes; Third, the transparency of virtualization presents a hurdle for guest-layer application and host-layer VM scheduler to cooperate and improve application QoS and system efficiency. This dissertation proposes to address the above challenges through fuzzy modeling and control theory based VM resource management. First, a fuzzy-logic-based nonlinear modeling approach is proposed to accurately capture a VM’s complex demands of multiple types of resources automatically online based on the observed workload and resource usages. Second, to enable fast adaption for resource management, the fuzzy modeling approach is integrated with a predictive-control-based controller to form a new Fuzzy Modeling Predictive Control (FMPC) approach which can quickly track the applications’ QoS targets and optimize the resource allocations under dynamic changes in the system. Finally, to address the limitations of black-box-based resource management solutions, a cross-layer optimization approach is proposed to enable cooperation between a VM’s host and guest layers and further improve the application QoS and resource usage efficiency. The above proposed approaches are prototyped and evaluated on a Xen-based virtualized system and evaluated with representative benchmarks including TPC-H, RUBiS, and TerraFly. The results demonstrate that the fuzzy-modeling-based approach improves the accuracy in resource prediction by up to 31.4% compared to conventional regression approaches. The FMPC approach substantially outperforms the traditional linear-model-based predictive control approach in meeting application QoS targets for an oversubscribed system. It is able to manage dynamic VM resource allocations and migrations for over 100 concurrent VMs across multiple hosts with good efficiency. Finally, the cross-layer optimization approach further improves the performance of a virtualized application by up to 40% when the resources are contended by dynamic workloads
    corecore