
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-6-2015

Fuzzy Modeling and Control Based Virtual
Machine Resource Management
Lixi Wang
lwang007@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the Computer and Systems Architecture Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Wang, Lixi, "Fuzzy Modeling and Control Based Virtual Machine Resource Management" (2015). FIU Electronic Theses and
Dissertations. Paper 1763.
http://digitalcommons.fiu.edu/etd/1763

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.fiu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/1763?utm_source=digitalcommons.fiu.edu%2Fetd%2F1763&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

FUZZY MODELING AND CONTROL BASED VIRTUAL MACHINE RESOURCE

MANAGEMENT

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Lixi Wang

2015

ii

To: Dean Amir Mirmiran
 College of Engineering and Computing

This dissertation, written by Lixi Wang, and entitled Fuzzy Modeling and Control Based
Virtual Machine Resource Management, having been approved in respect to style and
intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Jason Liu

Raju Rangaswami

Gang Quan

Ming Zhao, Major Professor

Date of Defense: March 6, 2015

The dissertation of Lixi Wang is approved.

 Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2015

iii

© Copyright 2015 by Lixi Wang

All rights reserved.

iv

DEDICATION

To my beloved parents.

v

ACKNOWLEDGMENTS

Foremost, I would like to express my deepest gratitude to my advisor, Professor

Ming Zhao, who accepted me as his first Ph.D. student. His enthusiasm and persistence to

doing great research in computer system has set me an excellent example during my pursuit

of Ph.D. Without his guidance and support, I would never have been able to finish my

dissertation. I would also like to thank his wife, Dr. Jing Xu for helping me a great deal in

developing my background in control theory and applying fuzzy logic to computer systems.

I want to thank my committee members, Professor Jason Liu, Professor Raju

Rangaswami and Professor Gang Quan for reviewing my proposal and dissertation and

offering helpful comments to improve my work.

I would also thank Yun Lv who helped to collect important experimental data during

our collaboration which was a joyful experience to me. Many gratitude to my lab-mates,

Dulcardo Arteaga and Yiqi Xu who assisted me in setting up experimental environment,

Douglas Otstott and Rachel Chavez who helped to enable my remote attendance to research

seminars during my absence. I want to thank Hsinyu Ha and Yimin Yang who as my good

friends, were always willing to help. A special thank goes to my friend Ting Li; it would

have been quite a lonelier and longer journey without her.

Finally, I would like to thank my husband and my parents, who provides me with

enormous support and encouragement during my entire Ph.D. life.

vi

ABSTRACT OF THE DISSERTATION

FUZZY MODELING AND CONTROL BASED VIRTUAL MACHINE

RESOURCE MANAGEMENT

by

Lixi Wang

Florida International University, 2015

Miami, Florida

Professor Ming Zhao, Major Professor

Virtual machines (VMs) are powerful platforms for building agile datacenters and

emerging cloud systems. However, resource management for a VM-based system is still a

challenging task. First, the complexity of application workloads as well as the interference

among competing workloads makes it difficult to understand their VMs’ resource demands

for meeting their Quality of Service (QoS) targets; Second, the dynamics in the

applications and system makes it also difficult to maintain the desired QoS target while the

environment changes; Third, the transparency of virtualization presents a hurdle for guest-

layer application and host-layer VM scheduler to cooperate and improve application QoS

and system efficiency.

This dissertation proposes to address the above challenges through fuzzy modeling and

control theory based VM resource management. First, a fuzzy-logic-based nonlinear

modeling approach is proposed to accurately capture a VM’s complex demands of multiple

types of resources automatically online based on the observed workload and resource

usages. Second, to enable fast adaption for resource management, the fuzzy modeling

approach is integrated with a predictive-control-based controller to form a new Fuzzy

vii

Modeling Predictive Control (FMPC) approach which can quickly track the applications’

QoS targets and optimize the resource allocations under dynamic changes in the system.

Finally, to address the limitations of black-box-based resource management solutions, a

cross-layer optimization approach is proposed to enable cooperation between a VM’s host

and guest layers and further improve the application QoS and resource usage efficiency.

The above proposed approaches are prototyped and evaluated on a Xen-based

virtualized system and evaluated with representative benchmarks including TPC-H,

RUBiS, and TerraFly. The results demonstrate that the fuzzy-modeling-based approach

improves the accuracy in resource prediction by up to 31.4% compared to conventional

regression approaches. The FMPC approach substantially outperforms the traditional

linear-model-based predictive control approach in meeting application QoS targets for an

oversubscribed system. It is able to manage dynamic VM resource allocations and

migrations for over 100 concurrent VMs across multiple hosts with good efficiency. Finally,

the cross-layer optimization approach further improves the performance of a virtualized

application by up to 40% when the resources are contended by dynamic workloads.

viii

TABLE OF CONTENTS	

CHAPTER	 	 	 		 	 	 	 	 	 	 PAGE

1. INTRODUCTION ... 1
1.1. Fuzzy Modeling Based VM Resource Management .. 3
1.2. Fuzzy Model Predictive Control (FMPC) Based VM Resource Management 4
1.3. Cross-Layer Optimization Based VM Resource Management 6
1.4. Organization of the Dissertation .. 7

2. BACKGROUND AND RELATED WORK ... 8
2.1. VM Based Computing System ... 8
2.2. Autonomic VM Resource Management ... 10

2.2.1. Queuing Model Based Resource Management ... 10
2.2.2. Control Theory Based Resource Management ... 11
2.2.3. Machine Learning Based Resource Management 12

2.3. Virtualized Database Hosting Systems .. 15

3. FUZZY-MODELING BASED RESOURCE MANAGEMENT 17
3.1. Motivation .. 18

3.1.1. Virtualized Hosting System .. 18
3.1.2. Non-linearity in Virtualized System ... 21

3.2. Background in Fuzzy-logic Based Modeling ... 23
3.3. Fuzzy Modeling Based VM Management ... 25

3.3.1. Application and VM Sensors .. 25
3.3.2. Adaptive Learner and Resource Predictor .. 27
3.3.3. Resource Allocator .. 30

3.4. Evaluation ... 32
3.4.1. Setup ... 32
3.4.2. TPC-H Experiments .. 34
3.4.3. RUBiS Experiments .. 41
3.4.4. Modeling Sensitivity and Overhead .. 45

3.5. Summary .. 46

4. FUZZY MODEL PREDICTIVE CONTROL BASED RESOURCE
MANAGEMENT .. 48

4.1. Background .. 48
4.1.1. Adaptive Virtual Resource Management .. 48
4.1.2. Model Predictive Control .. 50

4.2. Two-level Resource Management Architecture ... 52
4.3. Host-level VM resource management .. 54

4.3.1. Fuzzy Model Estimator ... 54
4.3.2. Optimizer .. 57

4.4. Cross-Host Cloud Resource Management ... 61
4.5. Evaluation ... 64

4.5.1. Setup ... 64

ix

4.5.2. Application-Level Target Tracking .. 65
4.5.3. Host-Level Resource Management ... 71
4.5.4. System-level Resource Management .. 83

4.6. Summary .. 84

5. APPLICATION-AWARE CROSS-LAYER OPTIMIZATION 86
5.1. Motivating Examples ... 86

5.1.1. Guest-to-Host Workload Characterization ... 87
5.1.2. Host-to-Guest Application Adaptation ... 88

5.2. General Approach to Cross-Layer Optimization ... 92
5.2.1. The Framework of Cross-Layer VM Resource Management 92
5.2.2. Guest-to-Host Optimization .. 94
5.2.3. Host-to-Guest Optimization .. 97
5.2.4. Integration with Fuzzy-modeling-based VM Resource Management 100

5.3. Case Study .. 101
5.3.1. Virtualized Database ... 102
5.3.2. Virtualized Map Services .. 107

5.4. Evaluation ... 109
5.4.1. Setup ... 109
5.4.2. Guest to Host Optimization .. 110
5.4.3. Host-to-Guest Optimization .. 120
5.4.4. Combining both Guest-to-Host and Host-to-Guest Optimizations 126

5.5. Summary .. 129

6. CONCLUSION AND FUTURE WORK .. 130
6.1. Conclusion .. 130
6.2. Future Work ... 131

REFERENCES ... 134
VITA ... 140

x

LIST OF FIGURES

FIGURE PAGE

Figure 3-1 CPU models for TPC-H experiment ... 20

Figure 3-2 CPU models for RUBiS experiment ... 20

Figure 3-3 I/O models for RUBiS experiment .. 20

Figure 3-4 Architecture of the autonomic resource management system 25

Figure 3-5 CPU allocation for the CPU-intensive TPC-H workload 37

Figure 3-6 Response time for the CPU-intensive TPC-H workload 37

Figure 3-7 Throughput for the CPU-intensive TPC-H workload 37

Figure 3-8 I/O bandwidth allocation for the I/O-intensive TPC-H workload 37

Figure 3-9 Response time for the I/O-intensive TPC-H workload 37

Figure 3-10 Throughput for the I/O-intensive TPC-H workload 37

Figure 3-11 CPU model for the CPU/IO-intensive TPC-H workload 39

Figure 3-12 I/O model for the CPU/IO-intensive TPC-H workload 39

Figure 3-13 CPU allocation for the CPU/IO-intensive TPC-H workload 39

Figure 3-14 I/O allocation for the CPU/IO-intensive TPC-H workload 39

Figure 3-15 Response time for the CPU/IO-intensive TPC-H workload 39

Figure 3-16 Throughput for the CPU/IO-intensive TPC-H workload 39

Figure 3-17 Trace for RUBiS with changing intensity ... 42

Figure 3-18 CPU allocation for changing intensity workload .. 42

Figure 3-19 Performance for changing intensity workload .. 42

Figure 3-20 Trace for RUBiS with changing composition ... 44

Figure 3-21 I/O allocation for changing composition workload 44

xi

Figure 3-22 Performance for changing composition workload .. 44

Figure 4-1 Two-level cloud resource management system .. 52

Figure 4-2 The architecture of the FMPC local controller system 60

Figure 4-3 Performance for bursty RUBiS workload ... 66

Figure 4-4 CPU allocation for bursty RUBiS workload ... 66

Figure 4-5 A real trace replayed in RUBiS browsing mix.. 70

Figure 4-6 Performance for realistic RUBiS browsing mix ... 70

Figure 4-7 CPU allocations for realistic RUBiS browsing mix .. 70

Figure 4-8 CPU allocations for interfering VMs .. 73

Figure 4-9 Weighted total throughput of interfering VMs ... 73

Figure 4-10 The 3-D fuzzy model for VM1 ... 74

Figure 4-11 The 3-D fuzzy model for VM2 ... 74

Figure 4-12 Changing workload for RUBiS VMs with changing weights 77

Figure 4-13 Average CPU allocations for each group of VMs .. 77

Figure 4-14 Weighted performance error for all VMs .. 77

Figure 4-15 The workload trace for all 8 VMs ... 82

Figure 4-16 CPU allocation in LMPC .. 82

Figure 4-17 CPU allocation in FMPC .. 82

Figure 4-18 Weighted 90th-percentile response time for all VMs 82

Figure 4-19 Level of QoS violation (weighted sum of the normalized performance
errors) across hosts .. 84

Figure 4-20 Placement of VMs across hosts... 84

Figure 5-1 I/O Allocation for a changing mix in RUBiS .. 87

xii

Figure 5-2 Performance for a changing mix in RUBiS .. 87

Figure 5-3 Execution time of Q8 with varied I/O allocations .. 89

Figure 5-4 Execution time of Q8 with varied memory ... 89

Figure 5-5 Response time of TerraFly workload with varying network allocation 91

Figure 5-6 Architecture of cross-layer optimization on fuzzy-modeling-based resource
management system .. 93

Figure 5-7 The mapping between database cost parameters and VM I/O bandwidth
allocation ... 104

Figure 5-8 The mapping between map service JCQ and workload intensity and VM

network bandwidth allocation ... 106

Figure 5-9 CPU allocations for a CPU-intensive TPC-H workload 112

Figure 5-10 Performance for a CPU-intensive TPC-H workload 112

Figure 5-11 CPU allocations for a CPU/IO-intensive TPC-H workload 115

Figure 5-12 I/O allocations for a CPU/IO-intensive TPC-H workload 115

Figure 5-13 Performance for a CPU/IO-intensive TPC-H workload 115

Figure 5-14 Trace for RUBiS with changing composition ... 118

Figure 5-15 I/O allocation with workload characterization .. 118

Figure 5-16 I/O allocation without workload characterization 118

Figure 5-17 Performance comparisons for RUBiS workload ... 118

Figure 5-18 Performance of a TPC-H workload with 50 request/s 119

Figure 5-19 Performance of a TPC-H workload with 30 request/s 119

Figure 5-20 Network bandwidth allocations to TerraFly VM .. 121

Figure 5-21 TerraFly’s JCQ settings... 121

Figure 5-22 TerraFly’s performance with different JCQ settings 121

xiii

Figure 5-23 A real TerraFly workload with changing intensity 125

Figure 5-24 TerraFly’s JCQ settings... 125

Figure 5-25 TerraFly’s performance with different JCQ settings 125

Figure 5-26 Performance of a TPC-H workload with both guest-to-host and host-to-
guest optimizations ... 127

Figure 6-1 Architecture of cross-layer optimization on fuzzy-modeling-based resource
management system .. 132

1

1. INTRODUCTION

With the rapid growth of computational power on compute servers and the fast maturing

of x86 virtualization technologies, virtual machines (VMs [1][2]) are becoming increasingly

important in supporting efficient and flexible application and resource provisioning. Served

as powerful platforms for hosting systems, VMs allow applications to be encapsulated along

with their execution environments and easily deployed on different systems. Virtualization

is the key enabling technology for building agile datacenters and emerging cloud systems

[3][4]. It allows a single physical server to be carved into multiple virtual resource

containers, each delivering a powerful, secure, customizable, and portable execution

environment for applications. As the level of VM-based consolidation continues to grow,

there is an increasingly urgent need for virtualized systems to deliver better Quality-of-

Service (QoS) guarantees, so that users are comfortable in running their applications on the

shared infrastructure. However, currently such systems cannot meet stringent performance

requirements, particularly not for applications with dynamic and complex behaviors.

Consequently, examples such as cloud systems cannot support QoS-based Service Level

Agreements (SLA), whereas users often have to purchase unnecessary resources for their

VMs.

Autonomic resource management promises to address these problems for such a VM

based hosting system. The goal of such a system is two-fold. First, it should be able to

automatically allocate resources to a VM according to the hosting application’s demand for

satisfying desired QoS. Second, it should be able to automatically adapt to dynamic changes

2

in the VM’s behavior and timely adjust the resource allocation, so that both resource

efficiency and QoS can be sustained. However, the complexity and dynamism in the

virtualized applications and system pose several key challenges for the VM based resource

management system, which makes it challenging to host application on shared resources

without compromising the QoS of applications or wasting the resources of the system.

 First, the complexity of application workloads which often consist of a variety of

requests with distinct resource usage may lead to not only different levels of but also

multiple types of virtualized resource demands. The interference between multiple

consolidated application workloads which compete for resources that cannot be

strictly portioned may also lead to complex nonlinear resource usage behaviors,.

 Second, the dynamics in both the applications (e.g., changes in an application

workload or variation in its QoS target) and the system (e.g., changes in service-

level objectives) require timely control actions in response to the environment

changes. The control actions should consider both the performance tracking

accuracy and the system stability, in order to not only maintain the desired QoS

target for individual applications but also sustain an optimized overall performance

for system-level objectives.

 Third, the transparency of virtualization presents a hurdle for guest-layer application

and host-layer VM scheduler to cooperate and improve application QoS and system

efficiency. Without any knowledge about the guest-layer application, it is difficult

for the host-layer scheduler to understand the application’s workload composition

and detect the intrinsic workload changes; without any knowledge of the host-layer

scheduler’s resource allocation decisions, it is also difficult for the guest-layer

3

application to adapt its application-specific configuration and improve its

performance as the resource availability changes.

1.1. Fuzzy Modeling Based VM Resource Management

In the first resource management approach, fuzzy modeling method is proposed to learn

and predict a VM’s demands of multiple types of resources based on the observed workload

intensity and resource usages. This method does not require any a priori knowledge of the

system’s internal structure and it can efficiently describe complex and nonlinear system

behaviors through a VM’s fuzzy model which can be learned and updated online. A

prototype of this fuzzy modeling based resource management approach is built on Xen-

based VM environment for a database hosting system. Databases often serve complex and

dynamic workloads which consist of a variety of queries with different types and amounts

of resource demands. Therefore, virtualized databases can be an excellent case study of the

proposed approach.

The main contribution of this approach lies in two aspects: first, it can accurately and

efficiently allocate multiple typs of resources, i.e., both CPU and disk I/O bandwidth, for

a database VM that is serving CPU and I/O intensive queries while delivering the same

level of QoS as using peak-load-based resource allocation; second, it can perform the

resource adjustments online at fine granularity (every 10s) and adapt to dynamic changes

in the workloads served by the virtualized database. To the best of our knowledge, this is

the first to study fuzzy modeling for virtualized applications with dynamic, multi-type

resource needs.

4

The experimental evaluations demonstrate that the fuzzy-modeling-based approach

improves the accuracy in resource prediction by up to 31.4% and 5.2% compared to the

conventional regression approaches. Both CPU and disk I/O bandwidth can be efficiently

allocated online to a VM serving resource intensive workloads. As a result, the QoS target

is met for 97% of the time and at the same time substantial resources (about 62.6% of CPU

and 76.5% of disk I/O bandwidth) are saved in comparison to peak-load-based allocation.

1.2. Fuzzy Model Predictive Control (FMPC) Based VM Resource

Management

In the above fuzzy-modeling-based resource management approach, a supplementary

strategy is employed to deal with the situations where the VM’s resource demand is

misestimated. However, such an adaptation strategy requires sufficient qualified data to be

collected within a short time period to update the system model. To address this limitation,

we propose to integrate the fuzzy modeling approach with a predictive control based

resource management system which allows a VM’s resource allocation to be directly

adjusted based on the difference between the application’s performance feedback and the

QoS target.

This approach is architected to answer two key questions: first, how to accurately

capture the complex relationship between resource allocation and application performance,

and second, how to adaptively optimize the resource allocations for competing VMs as

changes occur dynamically in the system. The first question is answered by employing the

fuzzy-logic based modeling method proposed above to learn the relationship between VM

resource allocation and application performance, which can efficiently capture system

5

behaviors without requiring any a priori knowledge. The second question is addressed by

using a new predictive controller to predict the resource demands for all VMs and take the

resource control actions that enable the system to quickly reach its optimization objective.

These two phases work in a closed-loop manner where the model is constructed and updated

online and resource allocations are adjusted dynamically in order to track the QoS target

and adapt to the changes in the system in a timely manner.

This dissertation also proposes a two-level resource management framework to employ

the FMPC approach, including the distributed host-level Node Controllers and the cloud

zone-level Global Scheduler. Each node controller uses FMPC to predict the resource

demands of its local VMs and optimize the resource allocations according to their QoS

targets. The global scheduler further improves performance across VM hosts by planning

VM migrations based on the resource demand estimates from the node controllers. The node

controllers in turn execute the VM migrations and transfer the performance models of the

migrated VMs to minimize the impact of migrations on application performance.

This proposed approach was prototyped on Xen-based virtualized systems and

evaluated using typical benchmarks. The results demonstrate that FMPC can accurately

estimate the resource demand for a VM running dynamically changing workload and

quickly achieve the desired QoS target. FMPC can also capture the complex behaviors of

resource competing VMs and optimize the resource allocations according to their QoS

targets. It substantially outperforms the traditional linear model predictive control (LMPC)

approach. Furthermore, the proposed two-level resource management framework can

effectively optimize the performance for more than 100 concurrent VMs running dynamic

workloads across multiple hosts.

6

1.3. Cross-Layer Optimization Based VM Resource Management

Based on the above fuzzy-modeling and control based resource management framework,

the third component of this dissertation proposes cross-layer optimization which allows

certain awareness and cooperation between a VM’s host and guest in order to improve

application performance and meet its QoS target. Specifically, two aspects of such cross-

layer optimization are explored. First, guest-to-host optimization exploits guest-layer

application knowledge to capture dynamic workload characteristics and improve modeling

of VM resource usage. Second, host-to-guest optimization enables host-layer scheduler to

feedback resource allocation decision and adapt guest-layer application configuration.

These two aspects of cross-layer optimization are integrated into the aforementioned fuzzy-

modeling-based resource management system which uses fuzzy logic to model VM

resource demands online and allocate resources dynamically according to application QoS

requirement.

As case studies, the proposed approach is applied to virtualized databases and map

services which have challenging dynamic, complex resource demands and sophisticated

configurations. Specifically, for databases, the proposed approach characterizes query

workloads based on a database’s internal cost estimation and adapts query executions by

tuning the cost model parameters according to the available storage bandwidth and memory

capacity. For map services, it adapts the quality of returned map imagery in order to meet

the response time target as the workload intensity and available network bandwidth change

over time. These case studies demonstrate the effectiveness of this approach and provides

an experimental evaluation.

7

This approach is the first to study cross-layer optimization in VM resource management,

considering both guest-to-host workload characterization and host-to-guest application

adaptation. With the guest-to-host workload characterization, resources can be efficiently

allocated to database VMs serving workloads with changing intensity and composition

while meeting the QoS targets, improving the database performance by 17% compared to

the allocation scheme without workload characterization. With the host-to-guest application

adaptation, the performance of TPC-H-based workloads is improved by 17% while a map

request workloads is improved by 15% in response time and 40% in map imagery quality,

compared to schemes without adaptation

1.4. Organization of the Dissertation

The rest the dissertation presents the details of the three research components mentioned

above. Chapter 2 introduces the background and related work. Chapter 3 presents the fuzzy

modeling based resource management approach and discusses the management of

virtualized database applications as a case study. Chapter 4 discusses the FMPC approach

which integrates fuzzy modeling with predictive control for adaptive resource management

in a dynamic system. Chapter 5 presents the cross-layer optimization approach which

enables cooperation between a VM host and guest in order to improve application

performance and resource usage efficiency. Finally, Chapter 6 concludes the dissertation

with an outline of the future work.

8

2. BACKGROUND AND RELATED WORK

2.1. VM Based Computing System

The emergence of VMs is driven by the fast maturation and wide availability of

virtualization technologies, as well as the rapid growth of computing power on modern

computer systems. On one hand, VM technologies are already efficient and reliable enough

to host mission-critical applications, and they are widely available for the virtualization of

various types of system; on the other hand, the ever increasing computing power of today’s

computers has provided the necessary resources to host VMs. In particularly, multi-core and

many-core CPUs are quickly emerging on not only high-end systems but also consumer

products. VMs are particularly suited to provide space-sharing of resources for such

systems.

The system-level VMs [1][2], which are based on the virtualization of an entire physical

host’s resources, including CPU, memory, and I/O devices, presenting virtual resources to

the guest operating systems and applications. Such VMs are mainly implemented by the

layer of software called Virtual Machine Monitor (VMM, a.k.a. hypervisor). Although our

proposed techniques can also be applied to some other types of virtualization (e.g., OS-

extension based VMs [5][6]), those are not the focus of this dissertation.

This dissertation considers the use of dedicated VMs to host different applications and

allow them to transparently share the underlying resources. Because the multiplexing of

applications to resources is provided at a lower level of the system, it has the following

advantages compared to traditional OS-based resource sharing:

9

 VMs provide strong isolation for resource sharing, allowing applications on one VM

to be protected from failures and security breaches occurred on another concurrently

hosted VM;

 Virtualization supports flexible allocation of various types of resources to VMs, and

VM migration further enables dynamic balancing of resource usages across physical

hosts;

 VMs allow application-tailored customization of their execution environments,

including OSes and libraries, and enable applications to be seamlessly deployed onto

resources with heterogeneous configurations.

 Virtualization provides promising platforms for building agile datacenters and emerging

cloud systems [3][4]. In such a virtualized system, physical servers can be carved into

multiple virtual resource containers, each delivering a powerful, secure, customizable, and

portable execution environment for applications by hosting applications on dedicated VMs.

As the level of VM-based consolidation continues to grow, there is an increasingly urgent

need for virtualized systems to deliver better Quality-of-Service (QoS) guarantees, so that

users are comfortable in running their applications on the shared infrastructure. However,

currently such systems cannot meet stringent performance requirements, particular not for

applications with dynamic and complex behaviors. Consequently, examples such as cloud

systems cannot support QoS-based Service Level Agreements (SLA), whereas users often

have to purchase unnecessary resources for their VMs.

10

2.2. Autonomic VM Resource Management

VM-based application hosting allows dynamic resource allocations based on the

demands from applications, thereby improving the overall resource utilization. However, a

key challenge to the success of this approach is how to allocate resources to a VM to achieve

both the application desired QoS and the system desired resource efficiency, and how to do

so for all the VMs automatically and continuously. To address this challenge, autonomic

computing techniques can be employed to realize self-managing of VM resource

configurations according to the high-level application performance and resource utilization

objectives [7]. A Monitor-Analyze-Plan-Execute (MAPE) control loop [8] can be deployed

to monitor the VM’s workload demand, analyze its resource needs, plan its resource

configuration, and then execute it accordingly. This dissertation follows this approach to

build autonomic systems for the resource management of VM based hosting systems.

Various solutions have been studied in the literature to address the problem of

automatically deciding a VM’s resource allocation based on its hosted application’s demand

and QoS requirement. We classify the related work into three categories: (1) Queuing model

based approach, (2) control theory based system, and (3) machine learning techniques. In

this dissertation, our proposed resource management solutions belong to the second and

third categories.

2.2.1. Queuing Model Based Resource Management

The first category of solutions employs queuing theory to construct analytical

performance models for virtualized applications. For example, Doyle et al. derive analytical

models from basic queuing theory to predict response times of Internet services under

11

different load and resource allocation [9]; Bennani et al. consider using multiclass queuing

networks to predict the response time and throughput for online and batch workloads on

VM based application environments [10]; Gulati et al. apply queueing model to build

approximate IO performance model in a storage management system for virtualized data

center[73]. However, solutions of this type are restricted by their often simplified

assumptions on a virtualized system’s internal structure, and are difficult to capture the

system’s complex resource usage behavior. Although Gandhi et al. employs a statistical

technique to adapt the parameters for a queueing theoretic model to capture dynamics in the

system without offline benchmarking, it focuses on more coarse-grained application scaling

in the cloud [69].

2.2.2. Control Theory Based Resource Management

The second category of solutions applies control theory to adjust VM resource allocation

and achieve the desired application performance or system-level objective. Such solutions

often assume a linear relationship between QoS parameters and control parameters and

involve a system identification phase to train the model parameters. In addition, the control

parameters typically must be specified or configured offline on a per-workload basis. For

example, Liu et al. consider the complex interactions and dependencies among different

application tiers hosted on VMs and optimize their CPU allocations in order to achieve QoS

differentiation among the multi-tier applications [11]. Its follow-up work [12] builds an

online ARMA model for each application to represent the relationship between the

allocations of multiple resources and normalized performance when the application tiers are

hosted on VMs spanning across physical nodes. Linear MPC has also been studied to

12

capture the last-level cache interference between concurrent VMs and compensate its

performance impact [13], which also points out that a nonlinear model can model such

interference much more accurately. In a typical linear-model-based MPC approach, a linear

model is assumed to approximate the nonlinear behavior within a limited region of an

operation point while it can be updated adaptively as the system moves from one operating

point to another. However, it remains challenging to perform optimized control

continuously over the entire operating space.

In the related work on other aspects of system management, Wang et al. uses MPC to

optimize the power consumption for multiple servers [51]; Lu et al. applies MPC to the

control of CPU utilization in a highly coupled distributed real-time system [52].

In comparison, we combine the strength of machine learning with control theory, which

does not require any a priori knowledge of the VM’s system model, and can efficiently

model a nonlinear system with dynamically changing resource usage behaviors. Compared

to adaptive linear models in traditional control system, we build continuous nonlinear

models to capture the system’s entire behavior more accurately and allow optimized

resource allocation over the entire operating space.

2.2.3. Machine Learning Based Resource Management

In the third category of solutions, machine learning techniques are extensively studied to

address several major problems in VM-based resource management system.

A variety of machine learning techniques are applied to system modeling for prediction-

based resource management. For example, simple regression method is used to predict the

performance impact of VM memory allocation [14]; Regression method is also employed

13

to map a resource usage profile obtained on a physical system to that on a virtualized system

[15]. However, these solutions often unable to capture the nonlinearity in a virtualized

system’s behaviors. Specially, their modeling accuracy is shown to be poor in modeling the

performance of complex hosting applications [17]. Artificial neural network (ANN) and

support vector machine (SVM) are then explored to build multi-dimension performance

models to predict the resource needs of hosting applications given certain performance

target [17][72]. These solutions identify three control knobs, CPU, memory limits, and disk

I/O latency as the inputs of the model and collects performance measurements under various

allocation configurations to build offline non-linear model to capture complex application

behaviors. Compared to such a typical performance modeling approach, we focus on the

autonomous management of both CPU and disk I/O allocations for virtualized applications

in an online, adaptive way. The performance model used in our fuzzy model predictive

control approach can be initialized using a small set of training data collected as the system

starts. Online adaptive control is then enabled to adapt the model continuously to reflect the

system changes by feed backing recent observations to the controller. Instead of evaluating

the overall accuracy for modeling static application workloads, we demonstrate the

effectiveness of our approach in tracking online performance target for representative

workloads which change dynamically over time.

Other popular machine learning techniques also have been widely studied for online

management scenarios. Reinforcement learning technique is used to automatically tune VM

resource configuration such as CPU and memory to achieve good performance for hosting

applications [16]; Signal processing technique is first employed to predict repeating

resource usage patterns for applications and hosts in a cloud [18][19] and later used to

14

achieve online adaptive padding when resource needs are under-estimated [74]. Compared

to those solutions which treat a VM as a black box, our application-aware management

solutions takes advantage of application-specific knowledge to effectively capture the

workload patterns and proactively optimize guest level performance. Clustering and

classification methods are utilized in [66][67] to adapt resources allocations for dynamic

workloads on the fly but these solutions still rely on offline profiling on small set of

representative workloads.

In the related research on workload-aware resource management, k-means clustering

combined with queuing models is employed to characterize workload with changes in both

volume and mix for predicting server capacity [46]. In comparison, our workload

characterization is performed more efficiently by leveraging the knowledge on resource

estimation directly from the hosted application to cluster its workloads

Other related works have shown promising results for VM provision and configuration

from a long-term prospective; mathematical models and clustering techniques are combined

to detect interference between co-hosted VM and therefore guide VM placement [68];

Markov Decision Process (MDP)-based algorithm is used to make efficient VM migration

decisions for long-term load balance [71]. While our solution focuses on the fine-grained

resource allocations for VMs within a host, e.g., allocating CPU time slices and I/O

bandwidth at short time scale, we also supports resource optimization across hosts in the

units of VMs at a larger time scale through VM migration based on a two-level resource

management framework.

15

2.3. Virtualized Database Hosting Systems

In the related research of virtualized database hosting systems, Farooq et al.

experimentally evaluated VM-based databases and showed that the overhead is very small

compared to natively hosted databases [24], which also confirms the feasibility of such

approaches. Soror et al. address the problem of automatic resource configuration for

database VMs by calibrating database’s internal query cost model [25]. However, this work

treats a workload as a static entity with a fixed set of queries, so the performance considered

is the overall runtime and the VM configuration is done statically for the entire workload.

The offline calibration process considers VM’s use of CPU, memory, and I/Os as

independent from each other, which may not hold due to the complexity of resource

virtualization. When the database’s cost model is inaccurate, this work employs online

refinement by assuming a linear resource usage model. Therefore, it is unclear how this

approach would apply to and how well it would perform for a workload with complex

resource usage and dynamically changing behavior. In contrast, our application-aware

approach uses database cost model only as a tool to discover workload composition, but not

for directly estimating VM resource demands, thereby avoiding the well-known inaccuracy

inherent to database cost models. In our solution, we more realistically treat a workload as

a non-stationary time series and considers fine-grained query performance needs. The VM’s

complex resource usage model is automatically learned and adapted online without any a

priori assumption.

Xiong et al. build probability-based classification model for incoming queries to make

admission control decisions for database system to meet expected performance target [75].

Salomie et al. exploit ballooning technique to reallocate RAM for database system to

16

preserve SLAs while maximizing utilization[76]. Other related autonomous database work

[26][27][28] focuses on a database’s internal tuning and query optimization. Those solutions

are all orthogonal and complementary to the problem addressed by this dissertation, which

focuses on the resource allocation to an entire database VM.

Previous work on workload characterization [29][30] also considers it as the key to

understanding the resource intensity of a database workload. In these studies, a workload is

often described with time-invariant structure and parameters, which is far from the real-

world situations. We incorporate both of these two aspects in fuzzy-modeling-based

resource management of virtualized databases. It improves the static workload

characterization method by allowing online and adaptive characterization and optimizes the

performance of virtualized databases by further tuning database parameters according to the

adjustment in resource allocations.

17

3. FUZZY-MODELING BASED RESOURCE MANAGEMENT

Virtual machines (VMs) [1][2] are powerful platforms for hosting a variety of

applications. For application providers, VMs allow fine-tuned applications to be

encapsulated along with their execution environments and easily deployed as appliances on

different systems. For resource owners, VMs support flexible resource allocation to both

meet application demands and convenient resource sharing among applications.

Virtualization is also the enabling technology for the emerging cloud computing paradigm

[3][4], which further allows highly scalable and cost-effective application hosting

leveraging its elastic resource availability and pay-as-you-go economic model. However,

due to the highly complex and dynamic nature of many applications, it is still challenging

to efficiently host them using virtualized resources. For example, typical database

applications have to serve dynamically changing workloads consisting of a variety of

queries and consuming different types and amounts of resources. This makes it difficult to

host such applications on shared resources without compromising Quality of Service (QoS)

or wasting resources.

To address the above challenges, this chapter presents a fuzzy-modeling based approach

for on-demand allocation of multiple types of resources to a VM running dynamic and

complex workloads while meeting the QoS requirement. Without any a priori knowledge

of the system’s internal structure, the fuzzy modeling approach can accurately describe

complex and nonlinear system behaviors and can dynamically adapt to the changes in

workload.

18

3.1. Motivation

3.1.1. Virtualized Hosting System

Traditionally, applications are hosted on dedicated physical servers that have sufficient

hardware resources to satisfy their expected peak workloads with desired QoS. However,

this is often inefficient for the real-world situations in many application domains such as e-

business [20] and stream data management [21], where the workloads are intrinsically

dynamic in terms of their bursty arrival patterns and ever-changing unit processing costs.

Even under domains where traditional static workload exists, it can dynamically switch

from one workload to another at runtime. For example, an online vendor database that serves

large number of user queries during the day may switch to internal bookkeeping jobs early

in the morning.

Therefore, the limitations of the traditional application hosting approach are two-fold.

First, peak-load based resource provision leads to overprovision and thus underutilization

of resources for normal state workloads. This can cause considerable infrastructural and

operational overhead. Second, as a steady-state workload demand exceeds its previously

expected peak value, the application performance may drop dramatically due to overload,

unless it can be moved to a more powerful server through a lengthy relocation process.

Using VMs to host applications can effectively address the above limitations, because

virtualized resources, including CPU, memory, and I/O, are decoupled from their physical

infrastructure and can be flexibly allocated to the application as needed. Virtualization can

consolidate many dedicatedly provisioned physical servers into a small number of shared

ones, where each of them can be carved into multiple virtual resource containers to provision

19

resources to applications. By hosting the applications on dedicated VMs separately, it allows

the application to share the consolidated resources with others with strong isolation. It also

allows the resource allocation to the application VM elastically grow and shrink based on

the application workload’s demand. In addition, application VMs can be dynamically

migrated across physical machines for resource optimization.

Virtualization also offers a new paradigm for application deployments. Modern software

system such as database have become rather sophisticated, where their installation,

configuration, and tuning often require substantial domain knowledge and experience as

well as considerable efforts for instance from the experts, for instance, database

administrators (DBA). This presents a hurdle to the wide deployment and effective use of

applications in traditional hosting. VM-based hosting allows carefully installed and

configured applications to be distributed as simply as copying the data that represent the

application VMs. For example, a DBA only needs to install, configure, and tune a database

once in the environment provided by a VM. With that, the deployment of the database on a

new host only entails transferring the VM data to the host, creating a new VM instance from

the data, and starting the new database that is already deployed in the VM. In addition, this

approach allows applications to be quickly replicated and distributed for performance and

reliability improvements.

20

Figure 3-1 CPU models for TPC-H experiment

Figure 3-2 CPU models for RUBiS experiment

Figure 3-3 I/O models for RUBiS experiment

30 40 50 60 70 80
20

30

40

50

60

70

80

90

100

Request Rate(Query/Minute)

C
P

U
(%

)

 fuzzy
measured
 linear
 quadratic

Norm of residual
fuzzy:3.74%
linear:17.3%

polynomial:7.5%

polynomial

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
30

40

50

60

70

80

Percentage of Biding Requests

C
P

U
(%

)

fuzzy
 linear
polynomial
measured

Norm of residual
fuzzy: 2.8%
linear:39.3%

polynomial:13.9%

0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

600

700

Percentage of Biding Requests

I/
O

 B
a

n
d

w
id

th
(K

B
/s

)

 fuzzy
 linear
 polynomial
measured

Norm of residual
fuzzy:13.3%
linear: 57.3%

polynomial: 14%

21

3.1.2. Non-linearity in Virtualized System

The major difficulty of online resource management for a virtualized hosting system lies

in how to model its intrinsically dynamic and complex behavior in an accurate and efficient

way. Commonly used linear modeling methods are no longer sufficient for modeling such

a system whose workload consists of different requests with diverse usage of multiple types

of resources. Either the bursty arrivals of requests or the transitions between different types

of requests in the workload may lead to more complex behavior of the virtualized

application. Here we use several concrete examples to demonstrate the nonlinearity in a

database VM’s resource usage behavior and the advantage of fuzzy modeling.

In the first example, a synthetic database workload based on a sequence of TPC-H [39]

queries is executed on a database VM. We gradually increase the workload intensity by

adjusting the query request rate until the virtualized database becomes saturated. Figure 3-1

plots the observed average CPU usage of the database VM as the request rate is increased

from 35 to 75 request/minute. The nonlinearity in such an OLAP database is evident as the

request rate exceeds around 55 query/minute and the system becomes saturated.

The second example considers a typical multi-tier OLTP benchmark, RUBiS [40]. We

fix the database tier’s query workload intensity by running 1000 concurrent client sessions

in RUBiS. But we vary the composition of the query workload by increasing the ratio of

bidding and browsing requests to the web tier which correspond to read and write queries,

respectively, to the database tier. Nonlinearity is apparent in the CPU and disk bandwidth

usages (Figure 3-2 and Figure 3-3) of such an OLTP database’s behavior, even though the

system is not under saturation.

22

We then study the accuracy of applying fuzzy modeling to the database VMs in the above

two examples and compare it to another two commonly used modeling methods, the simple

linear regression and the more complex second-order polynomial fitting. The models

created by these different methods along with the measured data are shown in Figure 3-2.

The figure also shows their norm of the residuals, a common metric for evaluating the

goodness of a model, which is defined as the square root of the sum of the squares of the

differences between the predicted values and the actual values. The results show that linear

model (linear) poorly fits the data points; the polynomial model (polynomial) can only

reflect the trend of the resource need but cannot predict accurately the amount of necessary

resources; only the fuzzy model is accurate regarding the entire data set which represent the

complete resource usage behaviors of the database VMs. As we will further demonstrate in

Section 3.3, our proposed fuzzy-modeling-based approach outperforms others in terms of

its accuracy and efficiency.

Note that such modeling-based resource management is different from a typical

feedback-control-based approach in which the application’s actual performance is used to

directly adjust the resource allocation in order to achieve the QoS target. In our modeling-

based approach, a model is first built to capture the relationship between the application

workload and its resource needs for the QoS target, and then used to predict the necessary

resource allocation for the current workload demand. Although fuzzy-logic-based feedback

controllers also exist [41], the key difference between our approach and those still lies in

the fact that fuzzy logic is used to build a model for the managed system instead of to directly

decide how to control the system.

23

3.2. Background in Fuzzy-logic Based Modeling

Fuzzy modeling combines fuzzy logic with mathematical equations to describe the

discovered patterns of system behavior and to guide the control strategies of the system [31].

A fuzzy model is a rule base which consists of a collection of fuzzy rules in the form of “If

x is A then y is B”, where A and B are determined by fuzzy sets with associated membership

functions. Contrast to a crisp set, a fuzzy set allows partial set memberships which can be

quantified into numeric values based on a membership function. Commonly used

membership functions are Gaussian, Sigmoidal, Triangular, Trapezoidal function, etc. The

fuzzy rules in a fuzzy model are trained using the input (x) and output (y) observed from the

system and together they compose the model representing the system behavior.

 While building a fuzzy model, data clustering techniques (e.g.,[32]) are often employed

to discover the important features of the system and derive a concise representation of the

system’s behavior. Each cluster is treated as a fuzzy set and then each set is associated with

a fuzzy rule. As a result, only a small number of fuzzy rules are needed in the fuzzy model.

For example, the model for a database VM from the experiment discussed in Section 3.3.2

is as follows,

 R1: If [C1, C2]T is in cluster1, then rCPU = [8.8 6.3][C1, C2]T + 3.1

 R2: If [C1, C2]T is in cluster2, then rCPU = [-0.5 1.5][C1, C2]T + 88

 R3: If [C1, C2]T is in cluster3, then rCPU = [12.8 0.5][C1, C2]T + 41

 R4: If [C1, C2]T is in cluster4, then rCPU = [8.3 2.1][C1, C2]T - 68

The input of the model is the query workload described by a vector of request rates of two

types of queries, [C1 C2]T, while the output of the model is the CPU resource usage, rcpu.

24

Given a total of 225 input-output data pairs measured in the experiment, clustering

technique is used to produce only 4 clusters which can effectively represent the entire

dataset. Each cluster is then treated as a fuzzy set and associated with a fuzzy rule as part

of the database VM’s model.

 The mapping from a given input to an output on a fuzzy rule base is called fuzzy

inference, which entails the following steps: 1) Evaluation of antecedents: the input

variables are fuzzified to the degree to which they belong to each of the appropriate fuzzy

sets via the corresponding membership functions, 2) Implication to consequents:

implication is performed on each fuzzy rule by modifying the fuzzy set in the consequent

to the degree specified by the antecedent; 3) Aggregation of consequents: the outputs of all

the fuzzy rules are aggregated into a single fuzzy set which is then inversely translated into

a single numeric value through a defuzzification method. Following the above example,

given a specific workload input [C1, C2]T, the fuzzy model learned from the TPC-H based

experiment can be used to predict the CPU demand rcpu following the above steps. Note that

this fuzzy-modeling approach is fundamentally different from traditional rule-based system

management approach [37][38]. The latter is based on the use of a set of event-condition-

action rules that are triggered only when certain events happen and some preconditions are

met. In such an approach, the rules are typically specified by system experts, which is often

intractable to apply to a complex system because of the difficulty in defining thresholds and

corrective actions for all possible system states. In contrast, a fuzzy model is built for the

entire input space of the system and can be used for continuous control, where the fuzzy

rules representing the model are created automatically from the observed input-output data.

25

3.3. Fuzzy Modeling Based VM Management

Figure 3-4 illustrates the architecture of our proposed resource management for VM-

based applications based on the aforementioned fuzzy modeling approach. This system

consists of four key modules. As a workload executes on the application VM, the

Application and VM Sensors monitor the workload W(t), its performance P(t), and the VM’s

resource usage R(t). With this model and the current workload W(t), the Resource Predictor

estimates the resource need for time t+1 and the Resource Allocator adjusts the allocation

accordingly. Together, these modules form a closed-loop for the VM’s resource control and

optimization. They are described in detail in the rest of this section.

3.3.1. Application and VM Sensors

In order to modeling resource usage for the application workload, first of all the workload

needs to be abstracted as one components of the inputs for the model. Application Sensor is

responsible for extracting the characteristics of a workload that is relevant to its resource

Figure 3-4 Architecture of the autonomic resource management system

Application & VM
Sensors

Adaptive Learner

Resource Allocator

Resource Predictor

Rule base

VMi

W(t), R(t)

P(t)

W(t), R(t)

W(t)

Updated
rules

R(t+1)
Resource
allocations

Workload
characteristic

w(t): Workload characteristics
r(t): VM resource usages
p(t): Applicaiton performance

Appi

26

usage behaviors when executed on an application VM. Such characteristics provide

important inputs to the effective modeling and prediction of an application VM’s resource

needs. A commonly used workload characteristic is the request rate which describes the

workload’s overall intensity and is often strongly correlated with its resource demand.

However, the characterization of an application workload is more challenging, because it

can consist of different request with diverse use of multiple types of resources. To address

this challenge, we propose to characterize a workload by first classifying its requests into a

small number of groups based on their resource usage patterns and then describing the whole

workload as a vector of arrival rates of these groups. This workload characterization process

can be done by leveraging the intimate knowledge of application, for example we make

advantage of a database’s internal cost model to clustering queries according to the estimates

on their resource usage, which will be discussed in details based on a cross-layer

optimization approach in Chapter 4.3.

The workload is characterized by the Application Sensor online periodically, in order to

reflect the workload’s current characteristics and used as input to the Adaptive Learner

described below for modeling the VM’s current behavior. Note that, the workload of current

time step t is used as the prediction of the workload of the next time step t+1 based on the

assumption that no sudden change happened within one period of time. Therefore, W(t) is

also used as the input for the Resource Predictor discussed below to estimate the resource

demand R(t+1). In our future work, we will consider more advanced workload prediction

using forecasting methods.

The VM Sensor monitors a VM’s resource consumption, which is the other key piece of

information for modeling the VM’s resource usage behavior. The monitoring has to be done

27

outside of the VM, because the application’s resource usage inside of the VM does not

truthfully represent its entire VM’s resource usage which entails overhead from both the

guest operating system and the use of virtualization. The VM Sensor in our system monitors

multiple types of resources including CPU, memory, and disk and network I/Os, as a

database VM can make intensive use of multi-type resources.

In addition to the information about application workload and VM resource usage, the

proposed system also needs to monitor the application’s current performance, in order to

determine whether the current resource allocation can meet the desired QoS. This

measurement is also done by the Application Sensor, using the typical performance metrics

such as throughput and response time. Note that we consider a workload as a continuous,

dynamic process. Therefore, the performance reported by the Application Sensor is fine-

grained, periodically taken measurements (e.g., every 10s), rather than the overall value

measured only once for the entire workload. The Application Sensor can be generally

implemented as a proxy that is inserted between the client and application VM server, so it

can forward requests to the application and meanwhile measure their performance.

3.3.2. Adaptive Learner and Resource Predictor

The Adaptive Learner creates and updates the model that represents the relationship

between an application workload and its VM’s resource need. It employs the fuzzy

modeling approach to automatically discover this relationship, where fuzzy rules are

constructed based on the input and output data pairs, <W(t), R(t)>, collected by the

Application and VM Sensors. Both the workload input W(t) and the resource usage output

r(t) can be vectors with multiple dimensions. For W(t), each dimension represents a certain

28

characteristic of the workload and for R(t) each dimension maps to one type of resources.

In order to learn a model that represents the resource needs of the VM for a specific QoS

target, only qualified input-output data pairs <W(t), R(t)> whose workload performance P(t)

meet the QoS target are fed to the Adaptive Learner. In this way, the resulting model trained

based on the filtered data can capture the VM’s resource needs in order to meet the given

QoS target. When the QoS target changes, the model will be different as the qualified

training data change.

While creating a fuzzy rule base from the qualified input-output data, it is inefficient to

generate one rule for every specific data pair. In order to build a concise fuzzy rule base

with a small number of rules that can still effectively represent the VM’s behavior, a

clustering method is used to group similar data points into clusters. In particular, the

Adaptive Learner adopts an efficient one-pass clustering algorithm, subtractive clustering

[32]. Each resulting cluster exemplifies a representative characteristic of the system

behavior and can be used to create a fuzzy rule accordingly.

The Adaptive Leaner generates Sugeno-type fuzzy rules [31] from the clustered data for

modeling the application VM. This type of fuzzy rules uses a crisp, linear or constant

function as the membership function, which is suitable for mathematical analysis. Suppose

for input the workload W(t) is described by N different characteristics, [C1, C2, …, CN] and

for output, two types of resources, CPU and I/O, [RCPU, RIO], are consumed. If K clusters

are formed from all the data pairs, then K rules are produced for this fuzzy model. The rule

base is constructed as follows:

Ri: IF input [C1, C2, …, CN] is in cluster i,

THEN output [RCPU, RIO]T = Ai[C1, C2, …,CN]T+bi

29

Each fuzzy rule is generated in a way that the corresponding cluster specifies a fuzzy set

in the antecedent associated with a Gaussian membership function, e , where

the Gaussian center c is set as the center of the cluster, and the parameter 	is equal to the

radius of the cluster. We choose Gaussian membership function for specifying fuzzy sets in

order to provide a smooth output surface. In the consequent of a fuzzy rule, the output R(t)

is a linear function of W(t), where the matrix Ai and vector bi are fitting parameters estimated

using the least-squares method.

The above modeling is performed periodically as workloads are executed on the

application VM, and it is capable of dynamically adapting to transitions in the VM’s

resource usage behaviors. Such a transition can be triggered by not only the change of the

workload’s intensity but also the change of its composition of queries with different resource

needs. To adapt to such dynamic changes, the Adaptive Learner updates the VM’s resource

usage model at the end of every control period based on the latest data collected by the

Sensors. So when a transition occurs, new data points that reflect the workload’s current

characteristics and the VM’s current resource usages are used for modeling. As those data

points become part of the online training data, the clustering result will be updated with a

possibly different number clusters with different centers, so that a new set of fuzzy rules can

then be created to represent the VM’s current behavior. In this way, both the system

structure and parameters are learned and adapted in real time from online data streams. The

system model is gradually evolved instead of using fixed structure model, and the learning

process is incremental and automatic. Owing to the speed of subtractive clustering and fuzzy

30

modeling, this whole model updating process can be completed quickly (typically under a

second) for fine-grained resource control interval.

With the fuzzy model created from the Adaptive Leaner, the Resource Predictor

performs fuzzy inference to generate an estimate of the resource need R given the workload

input W. Based on the aforementioned clustering-based Sugeno-type fuzzy model, a

Gaussian membership function is used in the antecedent of each rule to fuzzify the input W

to its membership of the cluster in every rule. The membership value computed is then used

as the weight for implication. In defuzzification, the consequent output of each rule is

generated by the linear equation specified by associated parameters. The final output derived

by aggregating all the weighted fuzzy outputs becomes the amount of resources estimated

by the Predictor. This estimation is then sent to the Resource Allocator to guide the VM’s

resource allocation.

3.3.3. Resource Allocator

In a virtualized system, a VM serves as a resource container to the hosted database, where

different types of resources can be dynamically allocated to this container for serving its

workload. This is in contrast to traditional, non-virtualized hosting, where an application’s

resource availability is statically defined by its physical machine’s configuration. The

Resource Allocator periodically (e.g., every 10 seconds) adjusts the multi-type resource

allocation to VMs based on the Resource Predictor’s estimate. The Resource Allocator also

needs to deal with situations where the resource prediction is inaccurate and causes the

application performance to diverge from the QoS target. This happens when the application

31

workload is first started or when its resource usage behavior changes so the Adaptive

Learner cannot properly model the VM’s current behavior.

In our approach, a backup resource allocation policy is employed to quickly recover from

performance loss resulted from QoS violations when the VM’s resource need is

underestimated due to inaccurate workload modeling. This backup policy is invoked based

on the recent information on the application’s performance measurement P(t), for instance,

after the QoS target is missed for several (e.g., two) consecutive periods of time. This

backup policy increases the current resource allocation by a fixed percentage (e.g., 100%)

in order to satisfy the VM’s unknown resource need which is beyond its previous resource

allocation level. (The choice of how soon to invoke the backup policy when a QoS violation

happens is studied in section 3.4.4.) This fixed increment of resource allocation is

accumulated until the QoS comes back to the target value, and afterwards the resource

allocation is sustained at that level until the target is met for several (e.g., two) consecutive

periods of time. Because the VM resource usage can be controlled at a fine granularity (in

the matter of seconds), this mechanism allows the performance loss to be quickly recovered.

Meanwhile, it also allows qualified data points to become quickly available so that the

model can be timely updated to correctly reflect the VM’s current resource needs.

However, the backup policy is only a supplemental method to our proposed fuzzy-

modeling-based resource allocation. Although in the form of a traditional event-condition-

action rule, it cannot substitute for the fuzzy model. The event-condition-action rules have

to be predefined based on experts’ knowledge, while the fuzzy model is automatically

learned from the controlled system. Further, the event-condition-action rules are often

statically defined, while the fuzzy model can be updated online to adapt to the changes in

32

the system. Hence, the backup policy is only triggered when the model is inaccurate and

unable to get qualified data to update itself. With the assumption that a workload’s stable

phases are much longer than its transition phases, the fuzzy model should be able to

correctly predict the resource needs for most of the time therefore the backup policy would

only be used infrequently.

3.4. Evaluation

This section evaluates our proposed approach on a virtualized database system which is

considered as challenging and interesting case study for applying the fuzzy-logic based

modeling due to its dynamic and complex behaviors [22]. Although our previous work

successfully applied fuzzy modeling to control CPU allocation for VMs hosting CPU-

intensive applications [23], the evaluation of the management of database VMs answers the

following unique, important research questions: 1) How to effectively manage a VM with

correlated, multi-type resource need, including not only CPU cycles but also I/O bandwidth?

2) How to timely adapt to the dynamic changes in a VM’s resource need in terms of not

only varying intensity but also shifting demand across different resource types?

3.4.1. Setup

The testbed is a quad-core Intel Q6600 2.4GHz physical machine with 4GB RAM and

142GB SATA disk. Xen 3.3.1 is installed to provide the VMs, where the operating system

for both Dom0 and DomU VMs is Ubuntu Linux 8.10 with paravirtualized kernel 2.6.18.8.

The evaluated databases are hosted on DomUs, while our resource management system is

hosted on Dom0. In all the experiments, the management system monitors and controls the

database VM’s usage of both CPU cycles and disk I/O bandwidth every 10 seconds. In the

33

VM Sensor, resource monitoring is done using xentop and iostat, where the I/O bandwidth

usage is considered as the sum of reads and writes per period of time. In the Application

Sensor, a database proxy deployed on Dom0 is used to measure the performance of the

database VM. The Resource Allocator uses Xen’s sEDF CPU scheduler to assign CPU

allocations and Linux’s dm-ioband I/O controller to set the cap for disk I/O bandwidth [42].

The sEDF scheduler uses 100ms period in the work-conserving mode. Another DomU VM

running a CPU-intensive program is pinned on the same core assigned to the database VM

to consume the surplus CPU cycles. Other VMs involved in our experiments are served as

clients running outside of our testbed.

Two typical database benchmarks, TPC-H [39] and RUBiS [40], are used in our

experiments. The performance metrics considered in TPC-H include both average query

throughput and average query response time measured every 10s. But in RUBiS only

response time is considered because it is strongly correlated with throughput for this

benchmark. Two different resource allocation schemes are compared: 1) The peak-load-

based resource allocation, where the database VM is statically allocated sufficient resources

based on its peak-load demand; 2) The fuzzy-modeling-based resource allocation, where

the VM’s resources are dynamically allocated based on our proposed approach. By

comparing the VM’s resource usage and the benchmark’s performance between these two

cases, we evaluate whether our proposed approach can achieve the same level of QoS while

saving resources compared to peak-load based static resource allocation.

34

3.4.2. TPC-H Experiments

TPC-H provides 22 representative queries of business decision support systems, which

involve the processing of large volumes of data with a high degree of complexity. Based on

these queries, we construct synthetic workloads with varying demands of different types of

resources. With peak-load based allocation, 100% CPU and 12MB/s or 10 MB/s I/O are

allocated to the database VM statically. With fuzzy-modeling-based allocation, there are

two phases involved. In the training phase, the fuzzy model is learned without resource

restrictions, while in the testing phase the model is applied to predict the resource demand

and control the resource allocation. The evaluation of more realistic workloads with online

training is discussed in Section 3.4.3. The database used here is PostgresSQL 8.1.3 with 2

GB of data, hosted on a VM with one CPU and 1GB RAM.

We characterize a TPC-H workload by classifying its 22 standard queries into four

clusters. Each cluster identifies one type of query with similar resource usage pattern.

Cluster I containing single query Q1 and Cluster II containing single query Q18 represent

highly and moderately CPU-intensive query, respectively. Cluster III including Q4, Q6,

Q15 and Q12 represents highly I/O-intensive queries. Cluster IV including most of the

remaining queries represents simple queries which are neither CPU nor I/O intensive. This

workload characterization can be performed based on the cost estimation extracted from

PostgresSQL using a cross-layer optimization approach which will be illustrated in the

following chapter. The resulting clusters are experimentally verified by the actual resource

usages when running the queries separately on the database VM.

35

a) CPU-intensive Workload

The first experiment evaluates our approach for a CPU-intensive workload consisting of

the two queries, Q1 and Q18, from Cluster I and II. While keeping the ratio of these two

clusters constant (3:2), the workload’s total request rate is varied between 25 to 65 requests

per minute. A set of evenly distributed request rate values (225 data points) within this range

are used to train the model which produces a 3-rule base. The workload is then run with a

different set of request rate values (150 data points) to test the model, for each value, the

workload is kept running for 300s. In the fuzzy-modeling-based approach, the resource

allocation is done periodically every 10 seconds.

The CPU allocation and workload performance from using the fuzzy-modeling-based

resource allocation and the peak-load-based resource allocation are compared in Figure 3-5,

Figure 3-6 and Figure 3-7. Note that both the workload performance and resource allocation

shown from fuzzy-modeling-based approach are average values calculated from the

measurements for each specific request rate. The performance obtained in the fuzzy-

modeling-based allocation is always at the same level as the peak-load-based allocation

even when the system becomes saturated after the request rate exceeds 55 query/minute.

This demonstrates that our proposed fuzzy model is able to capture complex system

behaviors over large region of the operating space. The throughput is within 96.4% to 100%

of the peak-load-based allocation, while the average response times only increase by at most

two seconds. (The throughput is expressed in terms of number of completed queries every

10s, because these queries are complex and time-consuming.) At the same time, substantial

amount of CPU allocation is saved when the workload is below the peak load. Note that,

36

because of the difference in CPU intensity between Cluster I and II queries, the VM’s CPU

need changes as the ratio of these two clusters varies. Our

37

approach can also properly model this behavior and accurately predict the VM’s CPU

need by taking this ratio as another input to the modeling. These results are omitted due to

the limited space.

Figure 3-5 CPU allocation for the CPU-

intensive TPC-H workload
	

Figure 3-6 Response time for the CPU-
intensive TPC-H workload

Figure 3-7 Throughput for the CPU-intensive

TPC-H workload
	

Figure 3-8 I/O bandwidth allocation for the
I/O-intensive TPC-H workload

Figure 3-9 Response time for the I/O-

intensive TPC-H workload
	

Figure 3-10 Throughput for the I/O-
intensive TPC-H workload

0

20

40

60

80

100

25 35 45 55 65

C
PU

 A
llo

ca
ti
o
n
(%

)

Request Rate (Query/Minute)

Peak‐load Allocation

0

5

10

15

20

25 35 45 55 65

R
es
p
o
n
se
 T
im

e(
s)

Request Rate (Query/Minute)

Peak‐load

Fuzzy

0

1

2

3

4

5

6

7

8

25 35 45 55 65

Th
ro
u
gh
p
u
t
(Q
u
er
y/
10

 S
ec
o
n
d
s)

Request Rate (Query/Minute)

Peak‐load
Fuzzy

0

2

4

6

8

10

12

14

16

35 55 75 95 115 135

I/
O
 B
an

d
w
id
th
(M

B
/s
)

Request Rate (Query/Minute)

Peak‐load Allocation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

35 55 75 95 115

R
es
p
o
n
se
 T
im

e(
s)

Request Rate (Query/Minute)

Peak‐load
Fuzzy

0

2

4

6

8

10

12

14

16

18

20

35 55 75 95 115 135

Th
ro
u
gh
p
u
t(
Q
u
er
y/
10

 S
ec
o
n
d
s)

Request Rate (Query/Minute)

Peak‐load
Fuzzy

38

b) I/O-intensive Workload

In the second experiment, we consider an I/O-intensive workload using queries, Q6, Q15,

Q12 and Q4, from Cluster III, which access a 200MB database table. We intentionally

modified the original queries to only touch on a small region of the table so that we can vary

the total request rate in a larger range. Further, the contiguous queries in the workload are

set to access different regions so that the workload is always I/O intensive. Note that the

purpose of this setup is only to make the experiment more interesting and it is only used in

this experiment. The workload is created with a sequence of queries randomly picked from

Cluster III. The total request rate of the workload varies from 20 to 140 requests per minute,

where the training set (250 points) and the test set (200 points) are created similarly to the

previous experiment. The resulting fuzzy model contains 4 rules.

Figure 3-8, Figure 3-9 and Figure 3-10 compare the I/O bandwidth allocation, query

response time, and query throughput between using fuzzy-modeling-based and peak-load-

based resource allocation. (The response times for the request rate of 135, not shown in the

figure due to the large magnitude, are 50.6s and 52.9s for peak-load-based and fuzzy-

modeling-based allocations respectively. The CPU allocations are also omitted because this

experiment is not CPU-intensive.) The results also demonstrate that our approach can

accurately model the database VM’s I/O bandwidth need for such an I/O intensive

workload. The throughput is within 89.5% to 100% of the as the peak-load-based allocation,

but up to 30% increase in response time is observed. We believe that this overhead is due

to the non-work-conserving nature of the dm-ioband I/O bandwidth controller, which

increases the queuing delay of the queries, affecting only the query response time but not

the throughput. We will investigate how to improve dm-ioband for query response time in

39

our future work. Nonetheless, substantial amount of I/O bandwidth is still saved using the

fuzzy-modeling-based approach when the workload is below the peak load.

Figure 3-11 CPU model for the CPU/IO-

intensive TPC-H workload	

Figure 3-12 I/O model for the CPU/IO-

intensive TPC-H workload

Figure 3-13 CPU allocation for the CPU/IO-
intensive TPC-H workload

Figure 3-14 I/O allocation for the CPU/IO-
intensive TPC-H workload

Figure 3-15 Response time for the CPU/IO-
intensive TPC-H workload

Figure 3-16 Throughput for the CPU/IO-
intensive TPC-H workload

20
40

60
80

0.2
0.4

0.6
0.8

20

40

60

80

100

Request Rate (Request/Minute)Percentage of Cluster I + II

C
P

U
 U

til
iz

a
tio

n

20
40

60
80 0

0.5
1

1

2

3

4

5

6

7

8

Percentage of Cluster I + IIRequest Rate (Request/Minute)

I/
O

 B
a

n
d

w
id

th
 (

M
B

/s
)

0

20

40

60

80

100

0.3 0.5 0.7 0.9

CP
U
 A
llo

ca
ti
o
n
(%

)

Percentage of Cluter I + II

Peak‐load Allocation

0

2

4

6

8

10

12

14

16

0.3 0.5 0.7 0.9

I/
O
 A
llo

ca
ti
o
n
 (M

B
/s
)

Percentage of Cluter I + II

Peak‐load Allocation

0

5

10

15

20

25

30

0.3 0.5 0.7 0.9

Re
sp
on

se
 T
im

e(
s)

Percentage of Cluster I+II

Peak‐load

Fuzzy

0

2

4

6

8

10

12

0.3 0.5 0.7 0.9

Th
ro
u
gh
p
u
t
(Q
u
er
y/
10

 S
ec
o
n
d
s)

Percentage of Cluster I + II

Peak‐load

Fuzzy

40

c) CPU/IO-intensive Workload

In the third experiment, we consider a workload that is both CPU and I/O intensive, by

mixing queries from Cluster I (Q1), Cluster II (Q18), and Cluster III (Q6 and Q15). For

simplicity, the ratio of the queries from Cluster I and II is fixed to 1:1 in the workload, but

the total ratio of Cluster I+II over the entire workload composition is varied from 0.3 to 0.9.

In addition, the total request rate of the workload also varies from 20 to 80 requests per

minute. Different sets of data points are evenly taken from these data ranges for training

(450 data points) and testing (150 data points).

This experiment is designed to evaluate our approach’s ability to model a both CPU- and

I/O-intensive workload with both changing intensity and changing composition. The

model’s input, the workload is characterized by both the total request rate and the ratio of

Cluster I+II and Cluster III queries. The resulting model is illustrated by two 3-D sub-

models each consisting of 12 fuzzy rules. The results show that our approach can properly

capture such complex behaviors of the database VM. From Figure 3-13 to Figure 3-16 show

the resource allocation and workload performance when the request rate is fixed at 75

requests per minute but the Cluster I+II/Cluster III ratio varies. Compared to using peak-

load-based resource allocation, the performance degradation from using fuzzy-modeling-

based allocation is less than 5s in average response time and less than 10% in throughput,

while saving both CPU and I/O bandwidth allocations. (The results from other request rates

are similar and omitted here.) These results show that the VM’s fuzzy model can accurately

predict both its CPU and I/O need and the resource management system can effectively

control them simultaneously, delivering good QoS to such a both CPU- and I/O-intensive

workload.

41

3.4.3. RUBiS Experiments

RUBiS models an online auction site that supports the core functionalities such as

browsing, selling, and bidding [40]. A typical two-tier setup is used to set up RUBiS, where

the Web tier and database tier are deployed on separated VMs. The Web-tier VM hosts

Apache Tomcat 4.1.40 with RUBiS and its clients while the database-tier VM hosts MySQL

5.0 with 1.1 GB of data. Both VMs are configured with one CPU and 1GB RAM. Since

these experiments are performed completely online, only the first 10 data points collected

are used to initialize the model. Afterwards the model is used to allocate resources right

away and in the meantime it is updated with new observed data every 10s. By interposing a

MySQL proxy before the database tier, our system characterizes its query workload online

in terms of intensity and composition. The composition can be captured by the ratio of two

types of queries, the SELECT queries, which are read-only, and the INSERT and UPDATE

queries, which are writes to the database.

a) Simulation of Real-world Workload

Compared to the synthetic workloads used in the above TPC-H experiments, here we

constructed two more realistic workloads, one with changing intensity and the other with

changing composition, based on real traces from the 1998 World Cup site [43]. This method

is similar to those used by the related work for creating realistic workloads [44][45].

The first workload with changing intensity is a browsing-only mix (Figure 3-17) derived

from a typical one-day hourly trace from the World Cup site. We first vertically scale the

range of request rate to what our RUBiS setup can handle, i.e., mapping [50000, 100000]

request/hour in the World Cup trace to [0, 1000] request/second in the RUBiS workload.

42

Second, we horizontally scale the duration of workload from 24 hours to 2880 seconds, to

speed up the replay of the trace. Since the workload intensity in RUBiS is controlled by the

number of concurrent client sessions to the web tier, another mapping is created from the

desired request rates to the number of client sessions.

The second workload is constructed in a similar way but we place emphasis on the

variation in workload composition while keeping its intensity constant (the number of

Figure 3-17 Trace for RUBiS with changing intensity

Figure 3-18 CPU allocation for changing intensity workload

Figure 3-19 Performance for changing intensity workload

0

100

200

300

400

500

600

700

0 240 480 720 960 1200 1440 1680 1920 2160 2400 2640

C
li
e
n
t
Se
ss
io
n
s

Time (s)

0

20

40

60

80

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

C
P
U
 A
llo

ca
ti
o
n
 (
%
)

Time (s)

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

R
es
po

ns
e
Ti
m
e
(m

s)

Time (s)

QoS Target(5ms)

QoS Target(2ms)

43

concurrent client sessions to the web tier is fixed at 800). Another one-day hourly trace with

a stable request rate is chosen to derive this workload. We identify the read and write

requests in the World Cup trace based on the “Get” and “Post” method, respectively, used

in each request. The ratio of the read and write requests in this trace is then mapped to the

ratio of the browsing and bidding requests in the RUBiS workload (Figure 3-17), which

corresponds to the SELECT to INSERT/UPDATE ratio to its database workload.

 The desired QoS target for these workloads is defined according to the performance of

the database VM under the peak-load-based resource allocation which statically assigns

70% CPU and 320KB/s disk I/O bandwidth. For the changing intensity workload, the QoS

target is 2ms when the web tier is not saturated and 5ms otherwise. For the changing

composition workload, the QoS target is set to 70ms.

b) Results

Figure 3-18 and Figure 3-19 show the CPU allocation and query performance of the

database VM for the changing intensity workload (the I/O allocation result is omitted

because this workload is not I/O intensive). As soon as the model is initialized through the

first ten data points, it is able to accurately predict the VM’s resource need throughout most

of the experiment even when the burst occurs at time 480s, 1450s, and 1930s without using

the backup resource allocation policy. At time 2100s, the system is under its peak load,

current model underestimates the CPU need and the backup resource allocation policy is

triggered to ensure the availability of qualified data for model adaption. After two control

periods (20s), the model is adapted to the new system behavior and able to correctly predict

the new resource need while the backup policy is stopped. The shaded area in Figure 3-18

illustrates the amount of resource saved (62.6%) in fuzzy-modeling-based resource

44

allocation. Figure 3-19 shows that the average query response time can meet the desired

QoS target most of the time (Only 11 QoS violation periods occurred throughout the entire

experiment).

Figure 3-21 and Figure 3-22 show the I/O allocation and query performance of the

database VM when running the changing composition workload (the CPU allocation results

Figure 3-20 Trace for RUBiS with changing composition

Figure 3-21 I/O allocation for changing composition workload

Figure 3-22 Performance for changing composition workload

0

200

400

600

800

0 240 480 720 960 1200 1440 1680 1920

C
lie
n
t
Se
ss
io
n
s

Time (s)

Biding
Browsing

0

100

200

300

400

0 200 400 600 800 1000 1200 1400 1600 1800 2000

I/
O
 A
ll
o
c
a
ti
o
n
 (
K
B
/
S
)

Time(s)

0

100

200

300

400

0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
es
p
o
n
se
 T
im

e
(m

s)

Time(s)

QoS Target (70ms)

45

is omitted due to limited space). It is evident that the fuzzy-modeling-based resource

allocation can quickly react to the changes in workload composition and deliver the desired

QoS most of the time. The spikes occurred at 360s and 1400s are caused by rapid shifts in

the ratio of the workload’s biding and browsing requests. The backup policy was invoked

only at these two times to quickly adapt the model and meet the QoS target again. We

believe that by improving the dm-ioband I/O bandwidth controller with work-conserving

scheduling can further reduce the spikes in response time during such abrupt transitions.

3.4.4. Modeling Sensitivity and Overhead

A key parameter used in the backup policy is the threshold for deciding when to invoke

and stop the backup policy. In the above RUBiS experiments, this threshold is set to two,

which means that the backup policy is triggered when the QoS target is missed for two

consecutive control periods and then canceled after the QoS target is met again for two

consecutive periods. When the backup policy is effective, it quickly increases the VM’s

resource allocation by doubling it every time the required QoS is violated. When it is

stopped, the predicted resource need from the updated model is again used to decide the

VM’s resource allocation.

In the last experiment, we study the sensitivity to this threshold of our proposed approach

study using a workload with changing composition created by switching between four

mixes, each producing a constant percentage of write queries, 0%, 4%, 8%, and 20%

respectively, to the database tier. Each mix lasts 300 seconds and then transits immediately

to the next mix. The number of concurrent client sessions is kept at 200. We run this

workload on RUBiS and use the fuzzy-modeling-based resource allocation with different

46

threshold values. The result shows that the same level of average throughput (21 query/s)

can be achieved when the threshold value varies from 1, 2, to 4, but the total number of uses

of the backup policy drops from 12, 2, to 1, respectively (the figures are omitted due to

limited space). It confirms that if the threshold is set lower, the backup policy is invoked

more often while it is set higher, longer QoS violations are experienced during the

transitions. The result verifies that the threshold value of two is a good choice but in general

this tradeoff can be determined by considering both the QoS requirement and resource cost.

We also measured the overhead of our approach for modeling and controlling the

database VM’s resource usage in the RUBiS experiment. The resource consumed by the

management system is small, which is less than 20MB of memory and 1% of CPU when

measured every second. The time required for modeling is also small, although it slightly

increases as the size of the training data grows. With 1000 data points, it takes about 0.4s.

In practice, when a sliding window is used to ensure the freshness of training data, this

overhead will remain negligible. The time required for fuzzy inference is even smaller and

independent of the dataset size.

3.5. Summary

Virtualization can greatly facilitate the deployment of applications and substantially

improve the resource utilization of the hosting system. To fulfill this potential, resource

management is the key, which should be able to automatically allocate resources to VMs

based on their QoS targets. This chapter presents an autonomic resource management

system that can achieve this goal through a fuzzy modeling based approach, which models

a VM’s resource usage behaviors based on observed data and predicts its resource needs for

47

its current workload demand. This process is done periodically (in terms of seconds) online

to guide dynamic resource allocation and adapt to changes in the system. Experiments based

on typical database benchmarks show that our system can accurately estimate a database

VM’s resource needs for dynamic and complex query workloads, meet the desired query

QoS, and save substantial resources compared to peak-load based static allocation.

48

4. FUZZY MODEL PREDICTIVE CONTROL BASED RESOURCE
MANAGEMENT

In the previous chapter, our fuzzy-modeling-based approach relies on a predefined

backup policy to deal with situations where the VM’s resource demand is misestimated due

to dynamic changes in the VM’s resource usage behaviors. However, empirical knowledge

is needed to decide factors such as how many consecutive QoS violations should be

observed before invoking the backup policy, and how much resources needs to be added on

the current allocation when resource is under provision. In this chapter, we study a new

fuzzy-model-predictive-control (FMPC) approach which better addresses this limitation by

automatically adjusting the allocations based on performance error instead of manually

increasing fixed amount of resources. Then it is further incorporated in a two-level cloud

resource management framework to manage VMs across multiple hosts based on system-

level objectives.

4.1. Background

4.1.1. Adaptive Virtual Resource Management

Emerging virtualized systems such as utility datacenters and clouds promise to be

important new computing platforms where applications could be executed efficiently and

resources could be utilized efficiently. A key challenge to fulfilling this promise is to

correctly understand an application’s VM’s resource demand based on its QoS target and

effectively optimize the resource allocation across VMs based on resource-provider

49

objectives. The major difficulty lies in the intrinsically dynamic and complex nature in the

resource usage behaviors in such virtualized system.

First, the dynamics in an application’s workload can lead to complex behaviors in its

VM’s resource usages as its intensity and composition change over time. For instance, a

web workload’s request rate varies depending on the time of day and the occurrence of

events [48]; a database workload can also change in terms of its composition of a wide

variety of queries with different levels of CPU and I/O demands as illustrated in Chapter

3. Second, interference among VMs hosted on the same physical machine can lead to

complex nonlinear resource usage behaviors as they compete for various types of resources

that cannot be strictly partitioned. For example, when co-hosted VMs compete for the

shared last level cache or disk I/O bandwidth, the relationship between each VM’s resource

allocation and its application’s performance is known to be nonlinear [17][49]. Finally,

even if the application workloads stay relatively steady, their SLAs, which specify the QoS

that they require and the cost that they are willing to pay, may change over time.

Consequently, resources in the system need to be reallocated across different applications’

VMs in order to sustain the system-level objective. As more applications become Internet-

scale and resources become more consolidated, the above scenarios would also be

increasingly common in a virtualized system.

In particular, machine learning techniques can be employed to automatically learn the

relationship between a VM’s resource allocation and its application’s performance;

Control-theory techniques can be used to build a feedback loop into the resource

management which can automatically adjust resource allocations and quickly reach the

50

desired system objective. This chapter proposes a new resource management approach

based on the combination of these two types of techniques that can effectively capture the

nonlinearly in virtualized system behaviors and quickly adapt to the changes in such

behaviors, which are discussed in details in the following subsections.

4.1.2. Model Predictive Control

Model predictive control (MPC) [50] is an advanced control technique in which the

controller takes control actions by optimizing an objective function that defines the

objective of controlling the system. To enable the predictive capabilities of the control

system, an explicit model that characterizes the system behaviors is leveraged to make

predictions of system output over a specific future prediction horizon. Such modeling and

optimization typically involved in MPC can be performed iteratively in an online fashion,

where real-time data are used to update the model in the modeling phase and new optimal

action is computed based on the model to adjust the system control. In this way, the system

can adapt to the changes in the system behavior in a timely fashion.

In contrast to an open-loop optimal control technique, the MPC system works in a

closed-loop manner by feeding back the information on previous inputs and outputs to the

controller at the end of each control period in order to keep track of prediction errors and

control variations, so that on one hand the controller is able to make more informative

control actions based on the feedbacks, while on the other hand the system is able to be

driven back to the set-point target appropriately without large oscillations even in the

presence of noise.

51

MPC has been used by related work on VM resource management [52][51], where most

approaches as the traditional feedback control methods do adopt “black box” linear input-

output models which are accurate enough to model nonlinear system behaviors within a

limited region of control operation.

Our proposed FMPC approach combines the strengths of machine-learning and

control-theory techniques in virtual resource management. Compared to other modeling

based approaches, the FMPC approach can be effectively applied online and quickly adapt

to changes in system behaviors. Typical model-based approaches require substantial data

for training the model which is difficult to do online. Even if a model can be built offline,

it is difficult to adapt it online when the system behavior changes. Compared to other MPC-

based approaches, the FMPC approach can well capture nonlinear system behavior without

much learning overhead. In a typical linear-model-based MPC approach, a linear model is

assumed to approximate the nonlinear behavior within a limited region of an operation

point while it can be updated adaptively as the system moves from one operating point to

another. However, as demonstrated by our experiment results, the FMPC approach can

more accurately capture the system behavior with a nonlinear fuzzy model and it can

perform optimized control continuously over the entire operating space.

52

4.2. Two-level Resource Management Architecture

This chapter considers the typical cloud environment where VM hosts are organized

into zones: Within each zone, the hosts use shared storage servers to store the VM images

so VMs can be quickly live-migrated across the hosts for load balancing; Across zones,

VMs cannot be easily live-migrated so it happens only at rare occasions, e.g., when an

entire zone is overloaded or under maintenance. Hence, the proposed resource management

framework focuses on the dynamic resource allocations at the host level and dynamic VM

migrations at the zone level. Nonetheless, the proposed two-level framework can also be

applied to balance loads across zones using non-live VM migrations according to the entire

cloud system’s service-level objectives.

Figure 4-1 illustrates the architecture of the proposed two-level cloud resource

management framework which includes a Node Controller on every VM host and a Global

Scheduler for the entire cloud zone. Specifically, a node controller is responsible for

Figure 4-1 Two-level cloud resource management system

Node Controller1

VM11

App11

Node1

Node Controller2

VM21

App21

Node2

Node ControllerM

VMM1

AppM1

NodeM

Global Scheduler

…

53

dynamically allocating resources to VMs and optimizing them using FMPC according to

application QoS targets. The global scheduler dynamically adjusts VM placement through

live migration in order to handle load variations on the VM hosts and to improve system-

level performance. The node controllers and global scheduler cooperate with one another

to complete the cloud resource management. When a node controller updates its predicted

resource demands of its local VMs, it sends this information to the global scheduler for

making VM migration decisions; when a global scheduler decides to migrate a VM, it

coordinates with the node controllers on the source and destination hosts to update their

performance models and adjust the resource allocations based on the new VM placement.

These two levels of resource management operate at different granularity and time

intervals. The node controllers allocate resources at a fine granularity (e.g., CPU cycles)

and time scale (e.g., every 20 seconds), because of the low overhead of making such

adjustments through the hypervisors and the fast speed of the proposed performance

modeling and resource optimization techniques. The global scheduler adjusts the resource

utilization across hosts in the units of VMs at a longer time scale (e.g,. every minute)

because of the relatively higher overhead and longer-term effect of VM migrations.

Therefore, in this two-level architecture, fine-grained, frequent control actions occur only

at the host level within the scope of the limited local VMs, whereas global control takes

place at a coarse granularity and infrequently. It is thus easier to scale compared to the

alternative one-level architecture that either employs a centralized manager to control the

resource allocations to all the VMs across hosts, or completely decentralize the

management so that a node controller has to communicate with all the other peers in order

to obtain global knowledge and coordinate VM migration decisions.

54

4.3. Host-level VM resource management

Figure 4-2 illustrates the architecture of our proposed system which consists of four

key modules, Application Sensors, Fuzzy Model Estimator, Optimizer, and Resource

Allocator. As the applications are running on their VMs, the Application Sensors monitor

the performance yi(t) from each application i and then send them to Fuzzy Model Estimator.

The estimator collects all necessary information including current and historical

application performance and VM resource allocations to create the fuzzy model for

performance prediction. Such a model which represents the relationship between the

control input (resource allocations to the VMs) and the measured output (performance of

the applications) is updated every control period. Based on the model, the Optimizer

produces a resource allocation scheme for the next time interval that optimizes the system

according to a predefined objective function. Then the Resource Allocator adjusts the

VM’s resource allocations accordingly. Together, these modules form a continuous

feedback loop for the virtual resource management.

4.3.1. Fuzzy Model Estimator

The proposed FMPC is a fuzzy-model-based predictive control approach [50]. The

major difference between FMPC and traditional MPC approaches lies in the modeling part.

In FMPC, the fuzzy model estimator is responsible for building models that can describe

complex system behaviors using fuzzy logic based method. The strength of this approach

includes the following aspects: 1) it simplifies the learning of the complex models by

describing nonlinearity using a set of linear sub models captured by the fuzzy rules; 2) it

can perform optimized control over the entire operating space; 3) it inherits the benefits of

55

traditional predictive control that can guarantee dynamic performance in a closed-loop

system and achieve desired target in a stable manner.

Consider a resource provider that hosts multiple applications by multiplexing multiple

types of resources among them via VMs, a general MIMO model in MPC described by the

following equation is used to build the time-varying relationship between resource

allocations and application performance,

Φ ,… , , 1 , … ,

where the input vector u(t) = [u1(t), u2(t), …, uN(t)]T represents the allocation of p types of

controllable resources to the q applications’ VMs at time step t (N = pq), and the output

vector y(t) = [y1(t), y2(t), …yq(t)]T is referred to as the predicted performance of q

applications at time step t. For example, if there are two applications whose performance

relies on two types of resources, i.e. CPU and disk I/O, then u(t) is a 4-dimensional vector,

[uCPU1(t), uCPU2(t), uIO1(t), uIO2(t)]T.

In traditional MPC approaches, linear models are applied to approximate the nonlinear

behaviors around the current operating point, while m and n reflecting the impact of the

previous inputs and outputs to current prediction are usually set to small values in order to

reduce the complexity of the model, e.g., with m = 0, n = 1, y(t) = Φ(u(t), y(t-1)) = au(t)

+ by(t-1).

In our proposed FMPC, the general Φ function from the control inputs to the system

outputs is instantiated by a fuzzy model composed of a collection of Takagi-Sugeno fuzzy

rules [31]

: 	 	 	 	 		 1 	 ,

56

 	 1 (1)

In the premise Ai and Bi
 are fuzzy sets associated with the fuzzy rule Ri. Their

corresponding Gaussian membership functions and

determine the membership grades of the control input vectors u(t) and y(t-1), respectively,

which indicate the degree that they belong to the fuzzy sets. In the consequence, the output

y(t) is a linear function of the current control input and the previous output with trainable

parameter matrices ai and bi.

The Estimator adopts an efficient one-pass clustering algorithm, subtractive clustering,

to build a concise rule base with a small number of fuzzy rules that can effectively represent

the VMs’ behaviors. Each cluster exemplifies a representative characteristic of the system

behaviors and can be used to create a fuzzy rule accordingly. In this way, both the system

structure and parameters are learned and adapted in real time from online data streams. The

system model gradually evolves as opposed to having a fixed structure model, and the

learning process is incremental and automatic. Owing to the speed of subtractive clustering

and fuzzy modeling, this whole model updating process can be completed quickly within

a fine-grained control interval.

The Estimator is invoked by the Optimizer discussed below in every control step t to

predict the performance for specific input values and assist it to search for the optimal

allocation solution across the input space. The Estimator applies fuzzy inference to predict

the output y(t) for a given control input < u(t), y(t-1) > based on a trained fuzzy rule base

with S fuzzy rules. It entails the following steps: 1) Evaluation of antecedents: the input

variables are fuzzified to the degree, , to which they belong to each of the fuzzy sets via

57

the corresponding membership functions for each fuzzy rule Ri;2) Implication to

consequents: implication is performed on each fuzzy rule by computing yi(t) based on the

equation in the consequent of the rule; 3) Aggregation of consequents: the final prediction

is performed as ∑ , where the outputs yi(t) of all the fuzzy rules are

aggregated into a single numeric value based on their corresponding membership grades

.

4.3.2. Optimizer

Generally, the objective function in MPC can be formulated as

∑ ‖ | ‖ 	∑ ‖ | ‖ (2)

where P and M indicate the prediction and control horizon. 	 is the predictive error

between y(t+i), the output of the next ith step predicted from the current time step t (using

the fuzzy model produced by the Estimator), and the reference output yref(t+i) of the next

ith step. indicates the control effort. The importance of tracking accuracy in

performance targeting and maintaining stability in control operation can be determined by

tuning the Q(i) and R(i) factors for the two components of the equation. Larger Q factor

will make the controller react aggressively to tracking errors in performance. Larger R

factor will guarantee the stability of the system by preventing from large oscillation in the

resulting resource allocation, but lead to slower response to the tracking error.

To reduce the complexity of the problem, we choose an objective function with M = P

= 1. In addition, in Equation 2, the performance of the q different applications, represented

in y = [y1(t), y2(t), …yq(t)]T, are treated with equal importance. In practice, applications

58

concurrently hosted in a virtualized datacenter or cloud are often given different

preferences, because they have different priorities or they generate different amounts of

revenue to the system. Without loss of generality, we use a weight vector w = [w1(t), w2(t),

…wq(t)]T to represent the preferences given to the applications. The following objective

function formulated as a constrained minimization problem considers not only tracking

QoS targets for individual applications but also optimizing resource allocations for

maximizing the system-level benefit especially when resources are contested.

∙ 1 	 1	 	

1 | 1 |

(3)

The goal of the Optimizer is to find a resource allocation 1 ∗ that can minimize

the above objective function, i.e., 1 ∗ 1 , subject to the total

resource capacity (e.g,. total available CPU time, total available memory capacity) of the

host. By taking the resource allocation that minimizes the objective function at each time

step, FMPC will be able to optimize the resource allocations to meet the applications’ QoS

targets, when it is not oversubscribed, or minimize the distance to the targets, when

oversubscribed.

The fuzzy performance model in FMPC is rule-based and not differentiable; a

minimization problem involving such models cannot be solved by any classical, derivative-

based optimization algorithm. A genetic algorithm (GA) method is applied to solve this

complex optimization problem [47]. This algorithm is well-known for tackling more general

59

optimization problems in which the objective function is non-differentiable, discontinuous

or highly non-linear, that are not well suited for standard optimization algorithm, e.g.,

quadratic or linear programming. In light of the natural selection process in biological

evolution, the GA algorithm encodes a solution in the optimization search space as a gene

in biological reproduction. By mimicking the gene combinations in biological reproduction,

it iteratively operates on a population of candidate solutions as a parent generation to

produce its children generation by selecting the good parent candidates and performing

randomly genetic operations (mutation and crossover) on them to produce the children for

the next generation. The goodness of each candidate solution is computed by a predefined

fitness function which is usually related to the objective function in optimization. Finally,

the population “evolves” toward a globally optimal solution over successive generations.

To implement a GA solver in the Optimizer, the control input u is specified as the

variable vector in the optimization as well as its bounded searching space. The solver

considers a fitness function based on the objective function defined in Equation 3, a model

function based on the fuzzy model learned by the Estimator, and a constraint function based

on the resource capacity bound. It then follows the genetic algorithm to search for the

optimal resource allocation 1 ∗. To ensure the speed of the solver, a bound is set on

the generations that the algorithm can produce, so that the optimization can finish within a

small control interval. Although the solver may return only a near-optimal solution, given

the time constraint, as FMPC operates iteratively, it can still steer the system to approach

the optimal state.

As described above, the Estimator and Optimizer work together in an online closed-loop.

The input-output data pair <u(t), y(t)> is measured and collected in every control period to

60

train the fuzzy model. A MIMO fuzzy model can handle a coupled system with multi-input

and multi-output to describe complex system behavior with implicitly contentions from

system components. Once the model is established, it serves as a prediction tool for the

controller to search for the optimal u(t+1) that promises the best y(t+1) which will be applied

to the VM resource allocation in the next control period. As shown in the evaluation section,

this control loop can be applied at fine time granularity (e.g., 20s) to meet QoS targets. It is

capable of quickly recovering from model inaccuracy (during bootstrapping or dynamic

changes in the system), as the observed performance for a given allocation is immediately

used to update the model and reflect the current behaviors.

Figure 4-2 The architecture of the FMPC local controller system

Application
Sensors

Resource Allocator

Optimizer
J(k) = W(k)|Y’(k+1)‐Yref|

2+
R|U(k+1)‐U(k)|2

U(k+1)* = argminu J(k)

Y(k) = [y1(k), y2(k),…]
T

Y(k), Y(k‐1), Y(k‐2),…

Iterate:
U(k+1)

U(k+1)*

U(k+1) = [u1(k), u2(k),…]
T

Y(.): application
performance (RT)
U(.): VM resource
allocation (CPU cap)
U*(.): optimal
allocation to
minimize objective
function
Y’(.): estimated
performance
Yref:QoS target
f(): fuzzy model used
for performance
prediction

y1(k)

Fuzzy Model Estimator
Y(k+1)=f(Y(k),U(k+1),

U(k))

U(k),U(k‐1), U(k‐2),…

Y’(k+1)

Training

VM1

App1

VM2

App2

y2(k)

XenVMM

61

4.4. Cross-Host Cloud Resource Management

Within a host’s resource constraints, the FMPC approach allows the node controller to

effectively optimize the host-level performance objective by allocating the resources to its

local VMs. However, local optimality achieved at individual host level does not guarantee

the global optimality in the entire zone because resource utilization may be unbalanced

across the hosts. The global scheduler in the proposed two-level cloud resource management

architecture addresses this issue and optimizes the zone-level resource utilizations by live-

migrating VMs across the hosts. There is a good amount of related work on the use of VM

migration to optimize for a variety of performance, energy, and thermal objectives (e.g.,

[64][65]). The global scheduler in the proposed two-level cloud resource management

architecture focuses on the use of VM migration for cross-host load balancing and its

integration with the FMPC-based node controllers.

To formulate the problem of VM consolidation, consider M VMs distributed among N

nodes in a cloud zone with an initial placement , , … , 	 	 1 ,

where ∑ M. Then the necessary condition of VM migration is defined as when the

total demands of a certain type of resource (e.g., CPU, memory, IO bandwidth), Resij from

all the VMij on Host i exceeds its capacity Ci, i.e., ∑ .

The global scheduler detects these conditions on its managed hosts based on the VM

resource demands estimated by the FMPC controllers of their node managers. It then uses

the information to carefully make migration decisions for the entire system. The global

scheduler continuously updates two lists based on the resource demands periodically

collected from the node controllers: OutList, the list of overloaded nodes which satisfy the

migration condition and need to move out some of its hosted VMs; InList, the list of

62

underutilized nodes with certain amount of residual resources and can be considered as the

destination for other VMs to move in. The OutList and InList are both sorted based on the

host-level total resource demands. At every migration interval, the global scheduler

identifies the VMs that need to be migrated by iterating the VMs hosted on the nodes in

OutList, starting from the node with the highest total resource demands. For a VM

considered for migration, it chooses a destination node with the least amount of residual

resources in InList. The new migration descriptor <VM, source_host, dest_host > is then be

added to a MigrationList. The OutList and InList will be updated to remove nodes that are

not overloaded and underutilized, respectively, anymore after the migration. The global

scheduler iterates all nodes in the OutList until there is either no moveable VM or no

available destination. It then sends the migration descriptors in the MigrationList to the

node controllers of the involved source and destination hosts to start the migrations.

When a VM is migrated, it needs to be removed from the source host’s fuzzy MIMO

performance model and added to the destination host’s MIMO model. If the migrating VM’s

performance model has to be retrained from scratch, it would have a considerable

adversarial impact on its performance as well as the performance of the other co-hosted

VMs. To minimize this impact, the node controllers on the source and destination hosts

work together and transfer the migrating VM’s performance model from the source host

and use it to bootstrap its model on the destination host. To facilitate this model transfer, the

MIMO model is decomposed into a set of single-input-single-output (SISO) fuzzy models,

so that the migrating VM’s model can be extracted and transferred. Note that there will be

inaccuracy when predicting the VM’s performance using the transferred model because the

other co-hosted VMs, which also affect the migrating VM’s performance, change after the

63

migration. But this inaccuracy will be corrected by the Fuzzy Model Estimator which

continuously updates the model online.

RunScheduler () {
Initialize ();
for (;;) {

Update(D); Update(Avail);
Update(Outlist);
Update(Inlist);
for each node i in Outlist {

for each {
 if (∃ ∈ Inlist | Availk ≥ Resij){

Migrationlist ← {< VMij , i, k>};
Availi += Resij; Availk -= Resij;
if (Availk ≤ Threshold){
 Inlist -= {k};
}
if (Availi ≥ 0){
 Outlist -= {i};
 break;
}

}
}

}
DoMigration(Migrationlist);
Wait till next migration interval;

}
}

Initialize (){
 for each node i {
 Availi = Ci - ∑

 if (Availi ≥ Threshold)
 Inlist ← {i}
 else if (Availi ≤ 0)
 Outlist ← {i}
 }
 Sort(Inlist);

Sort(Outlist);
}

Pseudo code for the migration scheduling

64

4.5. Evaluation

4.5.1. Setup

This section evaluates the proposed FMPC-based two-level cloud resource

management using representative benchmarks in a typical virtualized environment. The

testbed is a cluster of Dell PowerEdge 2970 servers, each equipped with two six-core

2.4GHz AMD Opteron CPUs, 32GB of RAM, and 1TB SAS storage. Xen 3.3.1 is installed

to provide the VMs, and the guest operating system is Ubuntu Linux 8.10 with

paravirtualized kernel 2.6.18.8.

To evaluate the FMPC approach’s accuracy and adaptability for modeling the complex

behaviors of such a multi-tiered application as a black box, the web and database tiers of a

RUBiS instance are deployed on the same DomU VM using Apache Tomcat 4.1.40 and

MySQL 5.0. The resource allocation to a RUBiS VM is dynamically controlled by the

FMPC-based node controller. The client VMs, which generate workloads to the RUBiS

VMs, are hosted on separate physical machines and they can launch up to 8000 emulated

client sessions in total. To create high CPU contentions, another benchmark,

FreeBench[55], which models computationally intensive jobs, was also used in the

experiments.

Because these benchmarks cannot saturate the storage bandwidth, the evaluation

focuses on the management of CPU resources. Nonetheless, the previous work studied the

use of fuzzy modeling to estimate the demands of both CPU and IO resources and showed

its significant advantage in accuracy over a linear modeling approach [60].

65

The control period of the node controllers is 20 seconds, during which a controller

updates its local VMs performance model and optimizes the resource allocations to the

VMs. The control period of the global scheduler is one minute, during which it gathers the

resource demands from all the node controllers, decides the VM migrations, and

coordinates the involved node controllers to execute the migrations.

The rest of this section presents the evaluation results. It first evaluates the FMPC

approach’s ability to correctly estimate an application resource demands and consistently

meet its QoS target while servicing a dynamic workload. It then evaluates the node

controller’s ability to optimize the resource allocations to multiple VMs at the host level.

Finally, it evaluates the global scheduler’s ability to improve system-level performance by

coordinating with the node controllers and dynamically migrating VMs across hosts.

4.5.2. Application-Level Target Tracking

The first group of experiment evaluates the ability of the FMPC-based controller in

tracking fine-grained QoS target for a multi-tiered application (RUBiS) that services a

dynamic workload.

The experiment compares the proposed FMPC approach to the adaptive linear MPC

(LMPC) approach studied in the related work[12]. In the FMPC approach, the predicted

performance is assumed to be dependent on only the current resource allocation, so

Equation (1) is simplified as : 	 	 	 , . In Equation (3),

both the input and output vectors u and y are normalized by their maximum values that the

system can achieve; and the Q and R factor are both set to 1 to balance the importance

between tracking accuracy and controlling stability. The baseline LMPC leverages a linear

66

auto-regressive-moving-average (ARMA) model which automatically trains the linear VM

performance model using the recursive least squares method [57] and is able to adapt the

model based on the online training. For both approaches, once the workload is launched,

the controller starts with an initial resource allocation that is much less than the actual

demand. The model is created from scratch with the first few data points and afterwards it

is updated every control interval.

Figure 4-3 Performance for bursty RUBiS workload

Figure 4-4 CPU allocation for bursty RUBiS workload

50

150

250

350

450

550

650

750

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Th
ro
ug
hp

ut
(r
eq

ue
st
/s
)

Control Period(20s)

FMPC

LMPC

target

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

CP
U
 A
llo
ca
ti
on

 (
%
)

Control Period (20s)

FMPC
LMPC

67

a) Bursty Workload with Throughput-Based Target

First, we evaluate the robustness of our FMPC controller under a bursty RUBiS

workload with abrupt fluctuations in the workload intensity within short period, i.e., the

number of concurrent client sessions changes from 2400 to 3200 then to 4000. Each phase

is kept for 15 control intervals (300s) before an immediate transition (within one control

period) to the next one. The corresponding throughput targets for each phase are set to 400,

500 and 600 requests/s respectively. The fuzzy model adapts as those large stepped changes

in workload: during the first phase, only 1 fuzzy rule is established in the rule base; by the

end of the experiment, 2 rules are trained.

Figure 4-3 shows the performance (throughput in requests per second) of RUBiS

measured every control interval, from using our proposed FMPC approach to manage the

VM resources versus using the LMPC approach. As we can see both approaches are able

to track the changes in the workload at periods 15 and 30 and meet the specified QoS

targets pretty closely. However, FMPC outperforms LMPC in several important aspects.

First, the FMPC based approach is more accurate in meeting the specified QoS target. The

average steady state error throughout all three phases is 2.3% for FMPC and 2.9% for

LMPC; particularly in the third phase, the steady state error is 1.7% for FMPC 3.3% for

LMPC.

Second, the performance controlled by FMPC adapts faster than LMPC when a step

change occurs in the workload intensity. The average settling time to within 5% of the

steady state for all three phases is 3 control intervals in FMPC and 5 intervals in LMPC,

where in each phase FMPC is 1 to 2 intervals faster than LMPC in settling time. This

68

advantage is because that FMPC’s fuzzy modeling is more accurate than LMPC’s linear

modeling when transition happens. Owing to the flexibility of FMPC, it tunes its model

more adaptively than LMPC does. For example, instead of being restricted by a fixed linear

shape mode of LMPC, FMPC can immediately add a new rule as soon as new data comes

which cannot be fit into current model. As a result, LMPC suffers from more than 20%

tracking error (1-y/yref) when the first transition occurs, whereas in FMPC there is almost

no tracking error. Overall, the average of the performance across all three phases using

FMPC is about 5% higher than using LMPC approach.

To better analyze the results, Figure 4-4 shows the corresponding CPU allocations.

With an initial CPU allocation of 50% the FMPC controller is able to detect resource under-

provision as soon as the first target miss is observed and converge to an optimal allocation

for meeting the target within a few control intervals. In comparison, the LMPC acts at least

one interval slower than FMPC in the first phase and two intervals slower in the second

phase. In the third phase, the LMPC approach also allocates 14% more CPU than the FMPC

approach. Such over provisioning could lead to loss of performance for other co-hosted

VMs and loss of revenue for the entire virtualized system.

b) Realistic Workload with Response-Time-Based Target

In the second experiment, we evaluate the capability of the FMPC controller in tracking

the response-time-based QoS target which is more sensitive to the accuracy in resource

allocation. 90th-percentile response time is used as the performance metric since it is more

reliable to reflect the Internet service quality [63]. However, it is also more challenging for

solving a control problem due to its highly non-linear relation in the performance modeling.

69

To make the RUBiS workload more realistic, the number of concurrent client session

is varied in a more random way by following a real daily trace collected from the

production web server of CS department in FIU [56]. We collect the number of requests

per hour in a daily trace and vertically scale the range of the request rate to the range that

our RUBiS setup can handle (Figure 4-5). To speed up the replay of the trace, we keep it

running for 200s to simulate one-hour duration in the real trace so that the duration of the

workload is scaled from 24 hours to 2880 seconds. The experiment starts with an initial

model pre-trained for the workload with 200 client sessions. As the workload varies, the

model is adapted online every control period. The QoS target for this RUBiS workload is

set to 20ms 90th-percentile response time, which can be achieved under sufficient resource

allocation.

Figure 4-6 and Figure 4-7 show the performance measurement and CPU allocations

every control interval, from using our proposed FMPC approach to manage the VM

resources versus using the LMPC approach. As we can see although both approaches are

able to track the performance target eventually as workload changes, FMPC is able to meet

the QoS target more closely and more responsive to the changes especially when the system

is heavily loaded (from time 1600s to 1800s); while the LMPC suffers more fluctuations

in performance than FMPC does during the same time period. This is mainly because

FMPC can capture more accurately than LMPC the highly nonlinearity in a heavy-loaded

system with respect to the percentile-based performance metric. The better accuracy in

learning non-linear percentile-based performance model and its fast online learning

algorithm allows FMPC to adapt more quickly under the highly dynamic workload and

converge to steady state with less fluctuations in system.

70

In summary, the proposed FMPC controller can automatically track the reference QoS

for an application by allocating the proper amount of resources to its VM. It also

outperforms LMPC in terms of the adaptively and accuracy.

Figure 4-5 A real trace replayed in RUBiS browsing mix

Figure 4-6 Performance for realistic RUBiS browsing mix

Figure 4-7 CPU allocations for realistic RUBiS browsing mix

0

100

200

300

400

500

600

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400

of

 C
lie

nt
 S

es
si

on

Time(s)

1

10

100

1000

10000

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

90
-P

er
ce

nt
ile

 R
es

po
ns

e
Ti

m
e(

m
s)

Time(s)

FMPC
LMPC
SLA=20

0

10

20

30

40

50

60

70

80

90

100

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

CP
U

(%
)

Time(s)

FMPC

LMPC

71

4.5.3. Host-Level Resource Management

The second group of experiments evaluates how the proposed FMPC controller

manages the resource allocations among multiple VMs on the same host in order to

optimize host-level management objective and how it reacts to the dynamic changes in

management policy

a) Fixed Workloads with Changing Weights

In the first experiment, we evaluate whether the proposed FMPC approach can always

achieve optimal total revenue where application SLAs change over time and how quickly

it adapts to such dynamic changes by hosting two RUBiS VMs on the same pair of physical

cores and varying their priorities during the execution.

To make it more interesting, we create scenario where interference exists between the

two VMs. By experimenting with the RUBiS workload, we notice that having 2400

concurrent users for one VM-hosted RUBiS application would create a total CPU demand

of 100% on the single dual-virtual-CPU VM which hosts both the web and database tiers

of RUBiS. However, if we run two independent RUBiS VMs concurrently and host both

VMs on the same pair of physical cores (using CPU affinity), then neither VM can achieve

the same level performance when serving the same workload even though each of them

can still get 100% of CPU. This observation confirms the existence of performance

interference across VMs which commonly exists on a highly consolidated virtualized

system.

To capture the behaviors for the entire system, including the individual VM

performances as well as the coupling relation among them, we use a two-input-two-output

72

FMPC to control the resource allocations to the two VMs. The input variables are the CPU

allocations to the two VMs and the outputs are the measured performance of the two

RUBiS applications. As discussed in Section 4.3.2, we assign different weights w1 and w2,

to the two VMs (w1 + w2 = 1), which represent the different priorities or impacts to revenue

as determined by the application SLAs. So the objective function is:

 22
222

2
111)(tuyytwyytwtJ refref

where , denotes the CPU caps set to the two VMs. Since they share the same

two physical cores, the total available CPU is 200%. The workload intensity for each VM

is fixed to 2400 client sessions. The QoS target yrefi is set to 400 request/s for both RUBiS

instances, which is the performance that it can achieve with 100% CPU and no interference.

Figure 4-8 shows the CPU allocations to both application VMs made by our FMPC

controller in the experiment. Initially, both VMs have equal CPU shares. In the first phase,

VM1 got more CPU resource (around 140%) than VM2 (around 60%) because the former

has a higher weight. Starting from the interval 16, as the weights change to 1:1, u1 decreases

and u2 increases, both quickly converging to 100% of CPU as expected. During the third

phase, VM1 is assigned less CPU (around 60%) than VM2 (around 140%) because VM2

now has a higher weight. Interesting, when one VM’s weight is set to three times of the

other one, it does not get three times of resource allocation, because of the nonlinear

relationship between VM resource allocation and application QoS.

To demonstrate the effectiveness of the FMPC-based resource management, we

compare it with the LMPC-based approach and another weight-based scheme which

73

intuitively partitions the total resource to VMs based on their assigned weights (i.e., the

CPU caps are set to 3:1, 1:1 and 1:3 for VM1:VM2 across the three phases.). The weighted

total throughput that is aggregated by the weighted throughputs from all applications in

the system is used as the performance metric for host-level objective in this experiment.

The results in Figure 4-9 illustrate that the allocation decisions made by the FMPC

controller substantially outperform the weight-based scheme across all three phases.

Figure 4-8 CPU allocations for interfering VMs

Figure 4-9 Weighted total throughput of interfering VMs

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

C
P
U
(%

)

Control Period (20s)

VM1 Cap

VM2 Cap

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

W
e
ig
h
te
d
 T
o
ta
l
Th
ro
u
gh
p
u
t

Control Period(20s)

FMPC

LMPC

Weight‐based

w1=0.75, w2=0.25

w1=0.5, w2=0.5

w1=0.25, w2=0.75

74

During the first two phases, LMPC works as well as FMPC. However, in the third phase,

FMPC generates about 4.7% more throughput in average than LMPC does. From the

results, we can see that FMPC can achieve higher weighted total throughput, particularly

in the first and third phases. Nonetheless, the FMPC approach can correctly capture these

nonlinear behaviors and produce much better resource allocations.

Figure 4-10 The 3-D fuzzy model for VM1

Figure 4-11 The 3-D fuzzy model for VM2

50

100

150

200

0

50

100

150

200
100

200

300

400

CAP1CAP2

T
hr

ou
gh

pu
t(

re
q/

s)

50

100

150

200

0

50

100

150

200
0

100

200

300

400

CAP1CAP2

T
hr

ou
gh

pu
t

(r
eq

/s
)

75

To further understand the impact of interference on VM performance, we use fuzzy

modeling to build a global two-input two-output non-linear model given the entire input

space for the two competing RUBiS VMs, where the two control inputs are the CPU

allocations to the VMs and the two control outputs are the measured performance for the

individual RUBiS instances hosted on the VMs. The model is created in the following way:

while keeping the workloads concurrently running against the two VMs, the CPU cap set

to each VM is varied from 0% to 200%. The model is trained offline based on a total of

350 data points collected from a set of evenly distributed cap values in this range. Each

data point is 4-element tuple < cap1, cap2, y1, y2 >. The fitting error is 7.4%.

For better illustration, we split this model into two 3-D models and illustrate them

separately in Figure 4-10 and Figure 4-11 each representing the behavior of one VM under

the interference from the other. From the models, we can see that for each application, the

performance is not only dependent on the CPU allocation to its hosting VM but also

affected by the CPU cap set to the other VM. With the same value of cap set to one VM,

its application’s performance will drop as the cap value of the other VM increases.

Nonetheless, the fuzzy logic based modeling technique is able to capture more complex

relationship between resource allocation and performance with the presence of interference

resulted from co-hosted VMs.

76

b) Changing Workloads with Changing Weights

In the second experiment, we evaluate our FMPC controller on larger-scale virtualized

system which hosts a mix types of application workloads, in which both the workloads and

the applications’ weights change dynamically.

Two different benchmarks are used in this experiment which are RUBiS and

Freebench[55]. A total of 12 VMs are pinned on the same 3 pairs of physical cores, each

configured with 1 virtual CPU and 1G RAM serving different types of application

workloads. 8 of them are deployed with the multi-tier RUBiS setup consisting of web and

database tiers and the other 4 VMs are deployed with Freebench. The entire experiment

lasts for 1200s, all the RUBiS VMs is performed with the same browsing mix trace with

varied intensity as illustrated in Figure 4-12 while all Freebench VMs are kept busy serving

continuous requests as long as the RUBiS workloads last. We assign different weights for

different applications, denoted as wR and wF for RUBiS and Freebench respectively. Those

weights is varied as well as the workload as showed in Figure 4-12. The VMs that host the

same application are treated equally. 90th-percentile response time and average response

time are used as performance metrics for RUBiS and Freebench. The QoS target is set to

20ms for the former and 0.8s for the latter. To make the performance of different

applications comparable, the real-time performance measurement is normalized into the

same magnitude by dividing its target value.

The experiment can be divided into three phases according to the weight values, i.e., <

wR, wF > = <0.25, 0.75>, <0.5, 0.5>, <0.75, 0.25>, for each phase the workload intensity

of RUBiS VMs increases from 300 to 400 client sessions. The total capacity in the system

77

is limited to 6*100% CPU. Both FMPC and LMPC approaches are compared in managing

all 12 VMs at the same time to optimizing the overall system performance. The

experiment can be then divided into three phases according to the weight values, and for

Figure 4-12 Changing workload for RUBiS VMs with changing weights

Figure 4-13 Average CPU allocations for each group of VMs

Figure 4-14 Weighted performance error for all VMs

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800 900 1000 1100

o
f
C
lie
n
t
Se
ss
io
n
s

Time(s)

wR= 0.5, wF=0.5
wR= 0.75, wF=0.25

wR= 0.25, wF=0.75

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000 1100

C
P
U
 A
llo
ca
ti
o
n
s(
%
)

Time(s)

FMPC‐RUBiS VM
FMPC‐Freebench VM
LMPC‐ RUBiS VM
LMPC‐ Freebench VM

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000 1100

W
ei
gh
te
d
 T
ra
ck
in
g
Er
ro
r

Time(s)

FMPC

LMPC

wR= 0.5, wF=0.5

wR= 0.75, wF=0.25

wR= 0.25, wF=0.75

78

each phase the workload intensity of RUBiS VMs increases from 300 to 400 client

sessions. The QoS target is set to 20ms response time for RUBiS and 0.8s loop time for

FreeBench. To make the performance of different applications comparable, the actual

performance measurement is normalized into the same range.

Figure 4-13 compares the online resource allocations made by FMPC vs. LMPC. For

simplicity, the average value of CPU allocations to VMs that run the same application is

shown for every control interval. Figure 4-14 compares the weighted sum of the normalized

performance errors, 1 , achieved by FMPC and LMPC. This metric

reflects the total performance discrepancy from the QoS target vector , which should

be minimized by the controller in a steady state.

At the beginning of the first phase, FMPC and LMPC make similar allocation

decisions, giving more CPU to the FreeBench VMs which have a higher weight than the

RUBiS VMs. But as the RUBiS workload increases, FMPC increases the CPU allocations

to the RUBiS VMs by shifting a total of 16% CPU allocations from the FreeBench VMs,

while LMPC does not recognize this need and its allocation decision is almost unchanged.

Consequently, LMPC has much higher performance errors, 63.7% in average, than FMPC.

When the experiment transits to the second phase, both the weights and the RUBiS

workloads are changed. FMPC handles these changes much better than LMPC, and results

in 78.3% lower performance error in average for the first half of this phase. In the second

half of the phase, both controllers enter the steady state, FMPC is still 8.9% better than

LMPC in average. The difference between these two approaches is even more drastic in

the third phase. At the beginning of this phase, both controllers favors the FreeBench VMs

79

because their higher weight. As the workload intensifies for the RUBiS VMs, FMPC

increases their allocations which eventually exceed the FreeBench VMs, whereas LMPC

continues to favor the FreeBench VMs. This opposite decision causes LMPC to perform

substantially worse (up to 11 times higher performance errors) than FMPC.

c) Realistic Workloads

The third experiment evaluates both the scalability and stability of the proposed FMPC

approach in managing more VMs under realistic workloads with more dynamic changes.

In this experiment, eight VMs share four physical CPU cores, and they all run RUBiS using

the same real-world web trace described in Section 4.5.2.c). To make the experiment more

interesting, the VMs are divided into four groups, and each group starts the replay from a

different offset of the trace, as shown in Figure 4-15. As a result, the four groups reach

their peaks and values at different times in the experiment, and the total load of the VMs

also varies over time. In this experiment, equal weight and QoS target (15ms) are set for

all the VMs. Note that when the system is saturated, none of the VMs can meet its QoS

target under equal resource allocations. However, this experiment focuses on how to

optimize the overall performance by minimizing the distance to the VMs’ QoS targets.

Figure 4-16 and Figure 4-17 compare the CPU allocations made by FMPC and LMPC.

For better clarity, the figures show the average allocations to each group of VMs. All VMs

start with equal resource allocations. The difference between FMPC and LMPC appears

from the 600th second when FMPC allocates an average of 9.8% more CPU than LMPC to

the VMs in Group 2 as the intensity of their workloads dominates over the other three.

When the system’s total load is around its peak (1400-2200s), FMPC favors the VMs in

80

Groups 1 and 3 even more than LMPC because their higher demands than the other two

groups. Then, when the workloads of all the other groups are decreasing (2400-2800s),

FMPC allocates more CPU to Group 4, which is still at its peak, than LMPC.

Figure 4-18 compares the overall performance achieved by FMPC vs. LMPC using the

average 90th-percentile response time as the metric because all the VMs have the same

QoS target and weight. At the beginning and the end of the experiment, the overall system

load is low and as a result there is not much difference in performance between FMPC and

LMPC. But when the system is more loaded, FMPC outperforms LMPC significantly. For

example, from 1000s to 1600s, while LMPC achieves an average response time of 29.2ms

and causes serious QoS violations (w.r.t. the 15ms target), FMPC still maintains a good

performance (17ms average response time). From 1800s to 2600s, when the system is

saturated, FMPC delivers a 15.6% better overall performance in average response time

than LMPC. From 2400-2800s, as all the workloads decrease, FMPC allocates a higher

CPU allocation (64.4%) to Group 4 than the remaining ones due to its larger ratio in the

total workload; LMPC only allocates an average of 55.2% CPU to the same group.

To demonstrate the effectiveness of the controller, the weighted 90th-percentile

response time, the mean of the 90th-percentile response time measurements from all RUBiS

VMs in the system is used as the host-level performance metric. Note that mean value is

used due to equal weights to all VMs. The performance comparison in Figure 4-18 shows

that the FMPC controller outperform the LMPC in coordinating multiple VMs to achieve

better host-level performance. For the most of time especially when the total workload in

the system is not so resource-intensive, e.g., for the first and the last 600s, LMPC works as

81

well as FMPC. However, for some time periods, more significant performance degradation

observed in LMPC than in FMPC; from time 1000s to 1600s, while LMPC suffers from

serious overall QoS violations, an average of 29.2ms in weighted response time, due to the

rising intensity in total workload, while FMPC can still maintain the weighted response

time as good as 17ms; from time 1800 to 2600s, while none of the VMs can obtain

sufficient resource in both approaches since the system is highly overloaded and the total

CPU amount needed is far from the host capacity, FMPC delivers a 15.6% better overall

performance in weighted response time compared to LMPC. According to the above

observation, FMPC is proven to be able to provide better allocation solutions to optimize

system performance in a more realistic scenario where multiple long workloads competing

for the limited amount of resources.

82

Figure 4-15 The workload trace for all 8 VMs

Figure 4-16 CPU allocation in LMPC

Figure 4-17 CPU allocation in FMPC

Figure 4-18 Weighted 90th-percentile response time for all VMs

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

o
f C

lie
nt
 S
es
si
o
n

Time(s)

G1:VM1‐2

G2:VM3‐4

G3:VM5‐6

G4:VM7‐8

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600

CP
U
Al
lo
ca
tio

n(
%)

Time(s)

G4

G3

G2

G1

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

CP
U
Al
lo
ca
tio

n(
%
)

Time(s)

G4

G3

G2

G1

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600

Re
sp
on

se
 T
im

e(
m
s)

Time(s)

LMPC

FMPC

83

4.5.4. System-level Resource Management

The last group of experiments evaluates the scalability of the proposed two-level cloud

resource management framework using a larger testbed. The setup described in Section

4.5.3.c) is extended from single host to six hosts, each initially running eight RUBiS and

nine FreeBench VMs. There are a total of 102 VMs under the management of a global

scheduler and six node controllers. Each scheduler/controller runs on a dedicated CPU core

to prevent interference from the benchmark VMs. An additional six client VMs are used to

generate the workloads for the RUBiS VMs. The traces for the RUBiS VMs are created

similarly to Section4.5.3.c), where all the RUBiS VMs are divided into six groups and each

group starts the replay from different offset of the trace.

 This experiment is designed to evaluate the ability of the two-level resource

management to use dynamic VM migrations to optimize the overall performance across

hosts. The baseline uses only the FMPC-based node controllers but without VM

migrations. Figure 4-19 shows the level of QoS violations—the weighted sum of the

normalized performance errors—occurred on every host over time using heat map. The x-

axis shows the time in seconds and the y-axis shows the host ID. The gray shades represent

different levels of QoS violations (the darker the worse), whereas the white color indicates

when all the VMs’ QoS targets are met. The results show that the use of VM migration

substantially improves the performance of the VMs across the entire system. Overall, the

average performance across all the VMs in the system is improved by 23.7% compared

when migration is not used. This improvement is made possible by the global scheduler

which decides VM migration based on the resource demands estimated using FMPC, and

84

by the node controllers which cooperate to migrate the VMs and their performance models.

Figure 4-20 also uses a heat map to illustrate the distribution of the VMs over time when

migration is employed to balance the load across hosts. The gray shades in the legend

represents the number of VMs on a host.

4.6. Summary

This chapter first presents a new fuzzy modeling based predictive control (FMPC)

approach which improves the adaptability in the previous chapter’s fuzzy-modeling-based

Figure 4-19 Level of QoS violation (weighted sum of the normalized performance errors)
across hosts

Figure 4-20 Placement of VMs across hosts

Time(s)

H
os

t
ID

Without Migration

0 500 1000 1500 2000 2500 3000 3500

1

2

3

4

5

6

Time(s)

H
os

t
ID

With Migration

0 500 1000 1500 2000 2500 3000 3500

1

2

3

4

5

6

Above Target

<=25%

<=50%

<=75%

<=100%

Time(s)

of

 V
M

s
pe

r
H

os
t

0 500 1000 1500 2000 2500 3000 3500

1

2

3

4

5

6

16

17

18

85

solution by adjusting resource allocation based on observed performance for host-level

objective. Then a two-level cloud resource management framework is extended to achieve

cross-host management. The node controllers work on the VM host level to estimate VM

resource demands and optimize each host’s resource allocations. The global scheduler

works at the cloud zone level to optimize resource utilization across hosts through dynamic

VM migrations.

Extensive experimental evaluation based on a multi-tiered applications and real-world

traces prove the effectiveness of the proposed approach. It shows that FMPC can accurately

estimate the resource allocation for a VM hosting dynamic workload and achieve the desired

QoS. It also shows that FMPC can capture the complex behaviors of competing VMs and

optimize the resource allocations under dynamic workload and policy changes in the

system. Finally, the experiment with over 100 VMs shows that the proposed two-level

resource management can well manage a large number concurrent VMs running on

distributed hosts and optimize the performance across the entire system. Compared to

traditional LMPC, FMPC is shown to be better in terms of the obtained application

performance and the speed and accuracy in achieving the application- or system-level QoS

target.

86

5. APPLICATION-AWARE CROSS-LAYER OPTIMIZATION

Existing resource management solutions in datacenters and cloud systems typically treat

VMs as black boxes when making resource allocation decisions, which presents a hurdle to

achieving efficient resource allocation for complex workloads and good application

performance under dynamic resource availability. In this chapter, we propose a cross-layer

optimization based on the fuzzy modeling approaches studied in the previous two chapters

and advocate the cooperation between VM host- and guest-layer schedulers for optimizing

the resource utilization and application performance. This approach exploits guest-layer

application knowledge to capture workload characteristics and improve VM modeling, and

enables the host-layer scheduler to feedback resource allocation decisions and adapt guest-

layer application configurations. As case studies, the proposed approach is applied to

virtualized databases and map services which have challenging dynamic, complex resource

demands and sophisticated configurations.

5.1. Motivating Examples

In this section, we first use several examples to motivate the need of cross-layer

optimization in VM resource management, including both guest-to-host workload

characterization and host-to-guest application adaptation and then discuss the related work

in the literature.

87

5.1.1. Guest-to-Host Workload Characterization

For the first aspect of cross-layer resource management, we use an example to

demonstrate that it is necessary for the host-layer VM scheduler to use the knowledge from

guest-layer for workload characterization. Coarse-grained workload information such as the

request rate or number of concurrent users can be easily obtained without knowledge about

application internals. However, this information is no longer sufficient when the application

workload consists of different types of requests with diverse usage of multiple types of

Figure 5-1 I/O Allocation for a changing mix in RUBiS

Figure 5-2 Performance for a changing mix in RUBiS

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400 450 500 550
I/
O
 U
sa
ge
(K
B/
s)

Time(s)

Actual I/O

Allocated I/O

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400 450 500 550

Av
er
ag
e
Re

sp
on

se
 T
im

e(
s)

Time(s)

SLA = 800ms

88

resources. Here we use a concrete example based on a typical multi-tier OLTP benchmark,

RUBiS to demonstrate this limitation (Figure 5-1 and Figure 5-2).

We fix the RUBiS’ database tier’s query workload intensity by running 300 concurrent

client sessions in RUBiS. But we vary the composition of the query workload by increasing

the ratio between bidding and browsing requests to the web tier, which corresponds to the

ratio between read and write queries to the database tier. The entire experiment lasts for 600

seconds, starting with a browsing-only mix and then shifting to a 30%-bidding mix from

the 300th second. The QoS target for this workload is set to 800ms. Without being aware of

the changes in workload composition, the amount of resources needed by the RUBiS VM

is estimated based solely on the workload intensity. Hence only 60KB/s I/O bandwidth is

allocated to the RUBiS VM throughout the entire experiment (Figure 5-1). This allocation

is enough for the workload to meet the QoS target in the first 300 seconds when the

workload is not I/O intensive; but it leads to many QoS violations in the second 300 seconds

due to the under-provisioning of I/O bandwidth (Figure 5-2). To address this problem, this

chapter proposes to exploit application-specific knowledge of workload characteristics in

terms of different types of requests in order to make more accurate allocation decisions.

5.1.2. Host-to-Guest Application Adaptation

Different virtualized applications are used as examples here to show the advantages of

feeding back the host-layer’s resource allocation information to the guest-layer.

In the first two examples, we use examples from virtualized database to show the

advantage of feeding back the information of resource availability from host- to guest-

layer. We run a workload consisting of a single copy of TPC-H [39] query Q8 against a

89

3GB database VM. Figure 5-3 and Figure 5-4 compare the query performance using two

representative settings of the cost model parameters in database, sequential_page_cost and

random_page_cost, denoted by seq and rand respectively. Both parameters characterize

the database’s execution environment: the former defines the cost of fetching a page from

disk using sequential reads whereas the latter defines the cost of a non-sequential disk page

Figure 5-3 Execution time of Q8 with varied I/O allocations

Figure 5-4 Execution time of Q8 with varied memory

0

200

400

600

800

1000

1200

1000 2000 3000 4000 5000

Ex
ec
u
ti
o
n
 T
im

e(
s)

I/O Allocation (KB/s)

seq:rand=1:8

seq:rand=1:4

0

50

100

150

200

250

300

350

400

450

384 512 640 768 896 1024 1152 1280 1408

Ex
ec
ut
io
n
Ti
m
e
(s
)

Memory(MB)

seq:rand=1:8

seq:rand=1:4

90

fetch. Changing these parameters affects the database performance indirectly by

influencing the database’s internal query cost estimation. Lower value of seq reduces the

cost of a plan with more sequential scans on the tables; lower value of rand reduces the

cost of a plan with more random scans, e.g., index scans. Therefore, when the ratio of seq

vs. rand is lower, the database favors execution plans that use more sequential scans; while

when the ratio is high, the database favors execution plans that use more random scans.

Figure 5-3 shows the performance of, Q8 on a database VM when its memory cache is

cold. As the I/O band-width allocated to the VM is reduced from 5000 to 1000 KB/s, the

performance of Q8 drops in both database configurations. However, when the available

I/O bandwidth is high, the sequential-scan-preferred configuration outperforms the

random-scan-preferred one (by 89% at 5000KB/s). When the available bandwidth is

reduced, the latter’s performance is much less affected and becomes faster than the former

(by 1.9 times at 1000 KB/s).

Figure 5-4 shows similar behavior of Q8’s performance but with respect to changing

memory availability when performed in a warm database VM. When the available memory

is low, the sequential-scan-preferred configuration is drastically faster than the random-

scan-preferred one (by 14 times at 384MB), because the query performance is bound by

disk I/Os where sequential I/Os are much more efficient than random I/Os. As the memory

availability increases large enough to cache the queried data, the random-scan-preferred

configuration starts to outperform the sequential-scan-preferred one (by 3 times at

1048MB), because the former touches less data (indexes are much smaller than tables).

91

The third example is demonstrated using a virtualized web-based map service. On one

hand, such a service needs to meet the response time target for map requests; on the other

hand, it is also desirable that the returned map imagery resolution to be as high as possible.

In Figure 5-5, two different service configurations are used to process a workload, by

changing the JPEG Compression Quality (JCQ) parameter which affects the quality and

size of returned map imagery. When the available network bandwidth is sufficient, both

configurations can meet the response time target, but the one with higher JCQ is desirable

because of its higher image quality. But as the available network bandwidth is reduced, the

configuration with lower JCQ becomes more suitable because it can lower the response

time by transferring less data.

The above examples show strong evidence of the importance of adapting virtualized

applications according to their actual resource availability. Cross-layer optimization is key

to enabling such adaptation.

Figure 5-5 Response time of TerraFly workload with varying network allocation

0

5

10

15

20

25

50 100 150 200

R
e
sp
o
n
se
 T
im

e
 (
m
s)

Network Allocation(Mb/s)

JCQ = 80
JCQ = 30

QoS Target

92

5.2. General Approach to Cross-Layer Optimization

The goal of cross-layer optimization is to enable VM host- and guest-layer resource

schedulers to communicate scheduling-related information and to collaboratively improve

the performance of a virtualized application and satisfy its QoS requirement. In traditional

resource management solutions, VMs are usually considered as black boxes when making

resource allocations. The host-layer VM scheduler is agnostic of the guest-layer

application-specific resource scheduling, whereas a guest-level application scheduler is

also unaware of the host-layer VM resource allocation. Such transparency is important for

reasons such as portability and legacy support, but for applications requiring strong QoS

guarantees, a tradeoff can be made to allow certain awareness and cooperation between

host and guest in order to meet the QoS target.

Such cross-layer optimization is two-fold. First, the host-layer scheduler can leverage

the guest-layer application-specific knowledge to improve the VM resource allocation

decision. Second, the guest-layer scheduler can adapt its application-specific scheduling

based on the host-layer VM resource allocation to improve the application performance

under changing resource availability. We will describe the general approach to both of

these aspects of cross-layer optimization in this section.

5.2.1. The Framework of Cross-Layer VM Resource Management

The cross-layer optimization can be integrated onto the two existing resources

management approaches discussed in Chapter 3 and 4. Here for simplicity, we consider to

instantiate it on the first solution. In the fuzzy-modeling-based resource management

system, since it directly employs a workload-resource model for allocations, it can better

93

demonstrate the effectiveness of our cross-layer optimization in improving the modeling

accuracy.

The main challenges to VM resource management are how to efficiently allocate

resources to VMs and how to do so automatically and continuously, which have been

already addressed in our previous chapter by employing a fuzzy-modeling approach to

learn a VM’s resource demand and allocate resources according to its QoS target in an

autonomic manner. Fuzzy logic is used to create a VM’s resource usage model

automatically from data observed from the system without assuming any a priori

knowledge about the system’s structure. It is shown to be able to effectively capture

complex, nonlinear resource usage behaviors in a virtualized system. Figure 5-6 illustrates

the architecture of our fuzzy-modeling-based resource management system integrated with

our proposed cross-layer optimization. The four key modules work in a more efficient way

with the help of cross-layer communication. As a workload executes on the VM, the

Figure 5-6 Architecture of cross-layer optimization on fuzzy-modeling-based resource

management system

Application &
VM Sensors

Adaptive
Learner

Resource
Allocator

Resource
Predictor

Fuzzy Model
W(t), R(t)

P(t)

W(t), R(t)

W(t)

R(t+1)

Host‐to‐Guest
Optimization

W(t): Workload characteristics
R(t): VM resource usages
P(t): Query performance

VM1

Application1

Guest‐to‐Host
Optimization

Online Fuzzy
Modeling

Dynamic Resource Allocation

Online Fuzzy
Inference

Real‐time
Monitoring

Virtual Machines

Physical Machine

94

Application Sensor abstracts the workload W(t) more accurately based on the knowledge

from application layer, and the VM Sensor monitors the corresponding performance P(t)

and the VM’s resource usage R(t). With a better understanding of the application workload,

the Adaptive Learner is able to learn a fuzzy model that reflects the relationship between

an actual workload and its VM’s resource needs. With this model and the precise

knowledge of current workload W(t), the Resource Predictor can estimate the accurate

resource needs for time t+1. As the Resource Allocator adjusts the allocation accordingly,

the allocation decision is feedback to the guest application as well. The internal self-

optimization process of the application is then invoked and the corresponding application-

level parameters are tuned according to the changes in resource availability for better

performance. Together, these modules form a closed-loop for the VM’s resource control

and optimization.

Fuzzy logic is employed to build the model based on the qualified input-output data

pairs, <W(t), R(t)> whose workload performance P(t) meet the desired QoS target. Both

the workload input W(t) and the resource usage output R(t) can be vectors with multiple

dimensions. With the fuzzy model created by the Adaptive Learner, the Resource Predictor

performs fuzzy inference to generate an estimate of the resource needs R given the

workload input W. This estimation is then sent to the Resource Allocator to guide the VM’s

resource allocation. More details on fuzzy modeling can be found in Chapter 3.

5.2.2. Guest-to-Host Optimization

The guest-to-host aspect of our proposed cross-layer optimization is to exploit the

guest-layer application-specific information to improve the understanding of the VM

95

workload’s resource usage patterns. Such knowledge will enable the host-layer resource

scheduler to more accurately estimate the VM’s resource demands and more agilely adapt

to its workload changes.

Specifically, we propose to analyze an application’s workload by describing it in terms

of the characteristics that are relevant to its VM resource usage behaviors. Such

characteristics provide important inputs to the effective modeling and prediction of the

VM’s resource needs. A commonly used workload characteristic is its overall intensity

such as the total request rate or total number of online users. It is often strongly correlated

with the VM’s resource demands and can be easily obtained without requiring much

knowledge of the application’s internals. However, this characteristic alone is not sufficient

for a real-world workload that consists of requests with diverse use of resources. For a

simple example, a web workload consisting of only static web page has distinct resource

needs versus one containing also considerable dynamic web page requests, even if their

request rates are exactly the same (the former consumes mainly CPU while the latter

requires also substantial I/O bandwidth). Therefore, it is important to characterize a

workload’s composition of different types of requests in terms of their resource usage

patterns. But such characterization is difficult to do in existing VM resource management

solutions which treat VMs as black boxes where application-specific knowledge is hidden.

To address this problem, we propose cross-layer optimization which allows a host-layer

scheduler to exploit a guest-layer application’s knowledge to understand the resource usage

patterns of its received requests in the workload. For example, for web workloads, the web

server’s knowledge can be exploited to understand whether the received HTTP requests

are targeting static or dynamic content. Such characterization of workload composition can

96

be a key to understanding the VM’s demands of CPU and I/O resources. For the workloads

that contain more complex requests, such as in Online Analytical Processing (OLAP)

databases, more sophisticated application knowledge is required to analyze their resource

usage patterns. We propose to characterize such workloads by leveraging the application’s

internal cost model, which is discussed in detail in Section 5.3.

The characterization of each individual request’s resource usage pattern can be

aggregated to describe the entire workload’s resource usage characteristics. However, for

workloads containing vast diversity of requests, it is impractical to describe all the requests

in the workload characterization. A concise representation is needed to effectively

compress all the request information, which is critical to ensure low overhead and high

robustness of the characterization. To this end, we propose to use data clustering techniques

to group a workload’s queries into clusters, so that those within a cluster are more similar

in terms of their resource requirements to each other than the ones from different clusters.

Assuming after the clustering a workload consists of m different groups of requests (r1, …

rm), the entire workload’s composition can then be characterized by the request rates of all

these groups (Wr1, …, Wrm), where each group represents a distinct resource usage pattern.

Many well established offline clustering algorithms are available for use, such as K-

means, hierarchical clustering, subtractive clustering, etc. However, because of the

dynamic nature of real-world workloads, the request cluster analysis should be carried out

in an online fashion. To achieve this, we propose online, adaptive request clustering for an

online, dynamic VM system, in which the clustering is performed in a way that is self-

learning and self-adapting, without needing the number of clusters to be pre-specified. The

basic idea of the online adaptive request clustering is to perform one-pass, non-iterative

97

clustering of a stream of requests. The procedure starts with an empty set of clusters and

creates the first cluster with the first request sample assumed to be the cluster center. As

more request samples come in, either a new cluster is added with the center based on the

new data, or an existing cluster is removed or updated based on certain criteria (e.g., the

radius set in subtractive clustering [32]). Such a clustering approach has the ability to

gradually adapt to the changing data patterns. It allows flexible clustering with an evolving

shape so that it can better match the current data distribution. The computation complexity

of this non-iterative approach is also lower compared to other iterative algorithms.

The above proposed workload characterization process will be performed online

periodically, in which the recently received requests will be used to update the workload’s

current clustering results. In this way, the characterization does not need a priori

knowledge about all the queries that compose the workload, and it can dynamically adapt

to the changing workload composition.

5.2.3. Host-to-Guest Optimization

The host-to-guest aspect of our proposed cross-layer optimization is to feed back the

host-layer VM resource allocation decision and enable the guest-layer application-specific

scheduling to adapt for better performance.

Many applications need to be tuned to optimize their performance based on the resource

availability of the hosting system. For example, a web server needs to tune parameters such

as the number of concurrent threads based on its host’s available memory. A database needs

to tune its internal cost model (e.g., the CPU and I/O costs of processing a tuple) based on

its host’s resource availability so that it can correctly estimate the costs of different query

98

execution plans and select the most efficient one to use. Another example application is a

simulator that tunes the modeling resolution based on its host’s resource availability and

the performance requirement.

When such an application is hosted on a physical machine, it needs to be tuned only

once during the initial deployment. However, on a VM, the resource availability can vary

over time, because of 1) changing resource contention from other co-hosted VMs as they

come and go dynamically and their workloads vary over time; 2) changing resource

allocation policy such as VM priorities or Service-level Agreements (SLAs). Nonetheless,

the changing resource availability to a VM is hidden to the applications in existing VM

resource management solutions. As a result, the application is stuck with the initial

configuration assuming a resource availability that is no longer valid. It cannot adapt itself

to use a configuration that is more efficient in application performance and/or resource

utilization when the VM’s resource becomes either under pressure or abundant.

In order to address this problem, we propose cross-layer optimization for the host-layer

scheduler to feedback the resource allocation decision to the guest-layer and automatically

adapt the latter’s configuration for improved performance given the current resource

availability. The general approach to this cross-layer optimization can be formally

described as follows. Assuming that there are M different types of resources, such as

memory, CPU capacity, or I/O bandwidth, Ri=[Ri1, …RiM] represents the amount of

resource of different types available for workload Wi of application i. The goal of the

performance optimization is to find a feasible set of configuration parameters, denoted as

Ci, of the application i that the performance of the workload Pi (Ri, Wi, Ci) is optimized.

99

On a physical machine, this process needs to be done only once when an application is

first deployed, because the total amount of resource is fixed. We only need to find out the

appropriate Ci that leads to the best performance. However when the application i is

virtualized, the optimization needs to be done dynamically as the VM’s resource

availability Ri changes over time. The configuration Ci of the application need to be

adjusted accordingly as the given resource allocation to the VM changes. In order to enable

such adaption, we need to have a means of mapping the given recourse allocation Ri to a

specific configuration Ci by finding the optimal parameter settings for the current

environment. Although this mapping is application specific, there are some general steps.

1) Find out the set of possible parameters Ci = [ci1,.. cik, cin] that contributes to the

application performance. For each parameters cik, we need to determine a function that

defines cik as a function of Ri, i.e., fik(Ri).

2) Given a certain resource allocation, run a general workload of the virtualized application

for the calibration process. Iterate a variety different value cik and measure its

performance. Collect the parameter value cik_opt with the best performance.

3) Repeat Step 2 under multiple different candidate resource allocation.

4) Collect the data pairs <cik_opt , Ri> for each allocation, perform regression analysis on

the set of the data to fit the function cik_opt = fik(Ri).

Once such a mapping is built for an application, the resource availability to the VM can

be directly fed into the application to enable its adaptation.

The aforementioned two aspects of cross-layer optimization are integrated with our

existing fuzzy-modeling-based VM resource management middleware. For guest-to-host

100

optimization, the workload is characterized by Application Sensor based on application-

specific knowledge, which is used by the Adaptive Learner for better modeling and

predicting the VM’s resource usage behavior. For host-to-guest optimization, as Resource

Allocator adjusts the allocations based on the prediction given by the fuzzy model, it also

feeds back this decision to the VM for the application to tune its parameters for

performance optimization. The resulting autonomic resource management system can not

only automatically allocate resources to VMs based on their dynamic workload demands

but also adaptively improve application performance even when the system is overloaded

and the VMs cannot get their requested resources.

5.2.4. Integration with Fuzzy-modeling-based VM Resource Management

The aforementioned two aspects of cross-layer optimization are integrated with the

fuzzy-modeling-based VM resource management introduced in Section 5.2.1. For guest-

to-host optimization, the workload is characterized by Application Sensor based on

application-specific knowledge obtained from the guest. Specifically, Application Sensor

can be implemented as a proxy which is deployed on the host of the application. It

intercepts all the requests to the application and uses application-specific knowledge to

characterize the requests before forwarding them to the application. The workload

characterization is used by the Adaptive Learner for better modeling and prediction of the

VM’s resource demands. For host-to-guest optimization, as Resource Allocator adjusts the

allocation based on the prediction given by the fuzzy model, it also feeds back this decision

to the guest for the application to tune its parameters for better performance. Specifically,

this adaptation can be implemented using a daemon running on the guest which

101

periodically obtains resource allocation decision from the Resource Allocator, computes

the optimal parameter settings, and adjusts the parameters through the application’s

configuration interface.

The resulting autonomic resource management system is able to not only automatically

allocate resources to VMs based on their dynamic workload demands but also adaptively

optimize the application configuration as the resource availability changes over time. The

stability of the system is ensured by two factors: 1) guest-layer application adaptation

occurs at a much coarser time granularity (e.g., every minute) than host-layer resource

adjustment (e.g., every 10 seconds); 2) the host-layer is able to quickly update its fuzzy

model to capture a VM’s new behaviors and continue to accurately predict its demands

when the guest-layer application adapts its configuration. The next section presents two

concrete case studies using two different and representative applications, databases and

web-based map services, to demonstrate the cross-layer optimization approach.

5.3. Case Study

In this section, we take virtualized databases as an interesting and challenging case

study of our proposed cross-layer resource management approach. Traditionally, databases

are hosted on dedicated physical servers that have sufficient hardware resources to satisfy

their expected peak workloads with desired QoS. However, this is often inefficient for the

real-world situations in many application domains such as e-business and stream data

management, where the workloads are intrinsically dynamic in terms of their bursty arrival

patterns and ever-changing unit processing costs. Using VMs to host databases can

effectively address this limitation. Virtualization allows a database to transparently share

102

the consolidated resources with other applications, with strong isolation between their

dedicated VMs. In a virtualized system, a database’s resource usage can elastically grow

and shrink based on the dynamic demand of its workload. In addition, it allows efficient

database distribution and replication for performance and reliability improvements.

5.3.1. Virtualized Database

a) Guest-to-Host Workload Characterization

Databases are challenging applications because of their highly complex and dynamic

resource usage behaviors. Database queries can be both CPU and I/O intensive and a

typical database workload can have a diverse variety of such queries with dynamically

changing composition. Nonetheless, a database’s internal query optimizer has intimate

knowledge of a query’s resource usage pattern. Such knowledge can be extracted from the

database and used to classify queries for characterizing the entire workload in terms of its

resource demands. The result of the workload characterization can be then used as input to

the VM’s fuzzy model to improve its accuracy and adaptability under dynamic changes of

the workload. Typically, the query cost is defined as a function of the amount of resource

usages estimated by the database, which can be extracted as a vector of different resource

costs. Note that the database’s cost estimation cannot be directly used to infer its VM’s

resource needs because, first, its accuracy is often limited [24], and second, it does not

capture the entire VM’s resource needs.

Specifically, the PostgreSQL database system can be used as an example to

demonstrate the guest-to-host workload characterization. PostgreSQL’s internal cost

model is defined as a function of a set of database cost parameters, denoted as CostD(C)

103

where C=[c1, c2,.., cm]. Each cost parameter represents the unit cost of either CPU or I/O

usage associated with an operation in database. For example, seq and rand represent the

overhead of a single sequential and random I/O to fetch a page from disk, respectively;

cpu_tuple_cost estimates the CPU cost of processing each row in a table. The total cost

that aggregates the costs of all operations in a query plan can be broken down into two

parts: the total CPU cost and the total I/O cost. Each query can be expressed as a 2-

dimention cost vector <CostCPU, CostI/O >.

To characterize a workload, the Application Sensor first extracts the cost vector for all

unique queries in a database workload and then performs subtractive clustering [9] on the

set of collected query cost vectors. This algorithm initially treats each query vector as a

potential cluster and selects cluster centers based on the density measures. By setting the

radius of a cluster r, any pair of the query vectors with distance d<r will fall into the same

cluster indicating queries with similar resource usage patterns. As soon as a query vector

arrives, the Application Sensor computes the distance to each existing cluster center and

classifies it into the most similar cluster. If it is not within the radius of any cluster, then a

new cluster with this new query vector will be added.

Finally, as the workload runs, the Application Sensor measures query intensity online

by counting the request rate for each individual cluster. For example, a workload mix W

consists of N queries, and after clustering only K clusters are generated where K<<N. The

work-load can be abstracted as a vector of arrival rates of these clusters < C1, C2, …, CK >.

Then the above arrival rate vector that reflects the current characteristics of the workload

is fed to the Adaptive Learner as an input for modeling the VM’s current usage behaviors.

At the same time, the workload characterization of current time t is also used as the input

104

for the Resource Predictor to estimate the resource demands of the next time step t+1 based

on the assumption that no abrupt change happens to the workload within one period of

time.

b) Host-to-Guest Database Adaptation

Databases represent a typical type of applications that have sophisticated internal

mechanisms to optimize their performance based on their knowledge about the hosting

environments. Based on the host’s resource capacity, a database’s query optimizer can

automatically evaluate the costs of different query execution plans and choose the most

efficient one to execute queries. As the availability of resources changes, critical

parameters on which the query optimizer depends on for cost evaluation should also be

updated accordingly, which will lead to better resource utilization and more efficient query

executions.

Specifically, a database often uses the aforementioned cost model CostD(C), defined

as a function of a set of parameters C, to estimate the costs for query execution plans. Each

Figure 5-7 The mapping between database cost parameters and VM I/O

bandwidth allocation

1 1.5 2 2.5 3

0.25

0.5

0.75

1

I /O Allocation (MB/s)

N
o
rm

a
li
ze
d
 v
a
lu
e

rand

seq

seq:rand

105

parameter ck in the cost model serves as a cost factor related to a certain type of operation

in query processing such as table scanning and tuple processing. Appropriate values on

these parameters that reflect the actual resource availability will help the query planner

choose the most efficient operations. Taking PostgreSQL as an example, as shown in

Section 5.1.2, the query optimizer switches from using sequential scans to random scans

for processing the TPC-H query Q8 as the ratio between seq and rand increases. Such

tuning is necessary when, e.g., disk I/O contention happens and more efficient scanning

method is desired given the limited I/O bandwidth.

To tune the cost parameters given changing resource availability, a mapping needs to

be created from the resource allocation to the optimal parameter values. Because all the

cost parameters in a cost model are factors normalized on the same scale, only the changes

in their relative values result in alternative query execution plan. Therefore, the mapping

needs to be built only between the optimal ratio of the cost parameters and the resource

allocation to the VM.

For example, to investigate the impact of I/O allocation on the scanning methods, the

ratio of the aforementioned two I/O cost parameters is considered. A simple query is used

to benchmark this ratio, which reads all the rows from a large table. The query is executed

by different plans (sequential scan vs. random scan) with different amount of I/O

allocations. The performance is observed for each scanning plan under different I/O

allocations. Since the cost of executing this simple query is mainly from the scanning

operations, the performance of different plans (sequential scan vs. random scan) can be

considered as the estimation of the I/O cost parameters (seq vs. rand) for different I/O

allocations. In this way, a mapping is built between the I/O allocation and the I/O cost

106

parameters (Error! Reference source not found.). When the VM’s I/O allocation

changes, the ratio between these two parameters can be then adapted accordingly so that

the database can choose the most efficient query execution plan under the given resource

allocation.

In addition to parameters that reflect the knowledge about the database’s execution

environment, there are also other types of parameters that defines the database’s own limit

for certain type of resource usage. Such parameters should also be adapted according to the

database VM’s actual resource availability. For instance in PostgreSQL, the parameter

shared_buffers changes the amount of memory that the database uses for caching data. A

reasonable setting of shared_buffers should be proportional to (e.g., ¼) the amount of

memory allocated to its VM.

Figure 5-8 The mapping between map service JCQ and workload intensity and VM
network bandwidth allocation

5
10

15

100

200

30040

60

80

100

Network Bandwidth(Mbps)Workload Intensity (# of clients)

O
pt

im
al

 J
C

Q

22ms QoS
17ms QoS

107

5.3.2. Virtualized Map Services

Another interesting case study of this chapter’s cross-layer optimization is web-based

map services [33][36]. Map services are the most important applications of modern

geographic information systems, which serve requests for maps and related geographic

information for a variety of clients over Internet. Because the requests to a map service are

often well organized by the map tiles, their resource usages are relatively uniform, and a

map service workload can be well characterized by using the workload intensity only (e.g.,

the number of requests per second, the number of concurrent users). Hence, this case study

focuses on the second aspect of the cross-layer optimization, the host-to-guest adaptation

of map services.

Map services represent applications that can tune their QoS based on the resource

availability (other examples include search engines and streaming services). The

configurations that need to be tuned on a map service include the resolution and

comprehensiveness of the returned maps and the selection of different search strategies for

geographic information. The settings of these configurations affect different aspects of a

map service’s QoS and need to be carefully tuned according to its host’s resource capacity.

Hence, automatic adaptation becomes important for a virtualized web map service when

its resource availability changes dynamically.

Specifically, this solution focuses on one key tunable parameter in a map service, the

JPEG compression quality (JCQ), which affects two different aspects of the QoS --

response time and imagery quality. JCQ determines the compression level of a map image

returned to a request. Setting a higher JCQ value results in returning maps with a better

108

resolution which also require more data transfer. This case study assumes a typical service-

level objective which is to meet the response time target while delivering maps with the

highest possible resolution. As illustrated in Section 5.1.2, this objective cannot be met

using a fixed JCQ setting in a virtualized web map system where the available network

bandwidth varies over time. It is necessary to adapt the JCQ setting automatically based on

the VM’s network bandwidth availability.

In order to use the host-to-guest map service adaptation for JCQ tuning, a mapping

needs to be created from the network bandwidth allocation to the optimal JCQ value. The

optimal JCQ depends on the workload intensity, the available network bandwidth, and the

response time target. To build the mapping, the map service’s performance is profiled by

varying the network band-width allocation and workload intensity under different JCQ

settings. Based on these collected performance data, the optimal JCQ can be then found by

searching for the highest JCQ value with which the corresponding performance satisfies

the given response time target.

In this way, the mapping is built from the network bandwidth availability and workload

intensity to the optimal JCQ for the given response time target. The profiling time can be

reduced by collecting only a subset of the data and using regression to build the rest of the

profile. Error! Reference source not found. illustrates two of such mappings for the

response time targets of 22ms and 17ms. A total of 144 data points were collected to build

a mapping in this figure and the fitting error is 2.95% on average. With these mappings,

the optimal JCQ value can be then adjusted automatically as the network availability or the

workload intensity changes.

109

5.4. Evaluation

5.4.1. Setup

This section evaluates cross-layer optimization approach using both databases and web

map services discussed in the case studies. The testbed is a physical machine equipped with

two six-core 2.4GHz AMD Opteron CPUs, 32GB of RAM, and one 500GB 7.2 RPM SAS

disk.

To evaluate the database system, Xen 3.3.1 is installed to provide the VMs, where the

operating system for both Dom0 and DomU VMs is Ubuntu Linux 8.10 with

paravirtualized kernel 2.6.18.8. The evaluated databases are hosted on DomUs, while the

resource management system is hosted on Dom0. The management system monitors and

controls the database VM’s usage of both CPU cycles and disk I/O bandwidth every 10

seconds. In the VM Sensor, resource monitoring is done using xentop and iostat, where the

I/O bandwidth us-age is considered as the sum of reads and writes per period of time. In

the Application Sensor, a database proxy deployed on Dom0 is used to measure the

performance of the database VM. The Resource Allocator uses Xen’s credit CPU scheduler

to assign CPU allocations and Linux’s dm-ioband I/O controller to set the cap for disk I/O

bandwidth.

Two typical database benchmarks, TPC-H and RUBiS, are used in the experiments.

Experiments performed on TPC-H benchmark are based on synthetic workloads with

highly complicated queries in order to show the accuracy in modeling complex resource

usage behaviors. For RUBiS, real-world workload is used to show the adaptiveness to

dynamic changes in virtualized system.

110

To evaluate the web map service, Microsoft Hyper-V 6.2 [34] is deployed to provide

the virtualization environment. The operating systems on parent and child partitions are

Windows Server 2012 and Windows Server 2008 R2 Datacenter respectively. The map

service application is hosted on the child partition configured with 1 CPU core and 4GB

memory. The resource management system deployed on the parent partition monitors and

controls the network I/O bandwidth to the child partition through the Hyper-V‘s bandwidth

management tool. The specific map service considered here is TerraFly [35] , a production

web-based map system serving requests from over 125 countries and regions and providing

users with customized aerial photography, satellite imagery and various overlays. The real

workload traces collected from production TerraFly system are used in the evaluation.

5.4.2. Guest to Host Optimization

a) TPC-H Experiments

TPC-H provides 22 representative queries of business decision support systems, which

involve the processing of large volumes of data with a high degree of complexity. Based

on these queries, we construct synthetic workloads with varying demands of different types

of resources. With peak-load based allocation, 100% CPU and 10MB/s I/O are allocated

to the database VM statically. With fuzzy-modeling-based allocation, there are two phases

involved. In the training phase, the fuzzy model is learned without resource restrictions,

while in the testing phase the model is applied to predict the resource demands and control

the resource allocation. The evaluation of more realistic workloads with online training is

discussed in Section 5.4.3. The database used here is PostgresSQL 8.1.3 with 2GB of data

on a VM with one CPU and 1GB RAM.

111

To characterize the TPC-H workload, subtractive clustering is performed on all the 22

queries based on their cost vectors, where a small radius of 0.1 is used in the clustering to

derive tight clusters. The result identifies four clusters. Cluster I containing single query

Q1 and Cluster II containing single query Q18 represent highly and moderately CPU-

intensive queries, respectively. Cluster III including Q4, Q6, Q15 and Q12 represents

highly I/O-intensive queries. Cluster IV including most of the remaining queries represents

simple queries which are neither CPU nor I/O intensive. This result is experimentally

verified by the actual resource usages when running the queries separately on the database

VM. The only exception is Q22 which is identified as another single-query cluster and

estimated by the database’s cost model as both CPU and I/O intensive.

However, its actual usage of CPU and I/O is very low, similarly to the queries in Cluster

III, which confirms our discussion that the database’s query cost estimation cannot be used

directly to infer the VM’s resource needs.

CPU-intensive Workload

The first experiment is based on a CPU-intensive workload consisting of Cluster I and

II queries, Q1 and Q18. The workload’s total request rate is varied from 20 to 50

request/minute while the percentage of Cluster I is also varied from 0% to 80%. About 20

data points with different combinations of request rate and cluster ratio evenly selected

from both input ranges are used to train the VM’s fuzzy model. With workload

characterization (fuzzy modeling w/ char), both the request rate and cluster ratio are

considered as a 2-dimention input vector for the fuzzy modeling. The result is a 3-D

112

fuzzy model with 7 rules. In contrast, without workload characterization (fuzzy

modeling w/o char), only the request rate is used for the input and the ratio factor is ignored.

As a result, a 2-D fuzzy model with 4 rules is trained. To evaluate these two models, the

workload is run with a different set of request rate and cluster ratio combinations (totally

60 data points) while the models are used to control the VM’s resource allocation

separately.

Figure 5-9 CPU allocations for a CPU-intensive TPC-H workload

Figure 5-10 Performance for a CPU-intensive TPC-H workload

Q1=0%

Q1=40%

Q1=80%

Q1=80%

Q1=40%

Q1=0%

0

10

20

30

40

50

60

70

80

90

100

25 35 45 25 35 45

C
P
U
(%

)

Request Rate (request/min)

Actual CPU usage

Fuzzy modeling w/ char

Fuzzy modeling w/o char

0

5

10

15

20

25

30

35

25 35 45 25 35 45

R
e
s
p
o
n
s
e
 T
im

e
 (
s
)

Request Rate (request/min)

Peakload‐based

Fuzzy modeling w/ char
Fuzzy modeling w/o char

113

Error! Reference source not found. compares the VM CPU allocations given by these

two models against the actual CPU usage of the VM when the resource is allocated based

on peak load. Error! Reference source not found. compares the workload performance

under these two CPU allocation schemes against the ideal performance under peak-load-

based allocation. The result shows that the CPU allocation given by the fuzzy model

created with workload characterization closely follows the VM’s actual demand; the

average error is below 2.3%. The model created without workload characterization can

lead to significant under- or over-provision; the average error is about 36.7%. The

difference in CPU allocation accuracy leads to significant difference in the query

workload’s performance. When using the model created with workload characterization,

the query response time is always at the same level as the peak-load-based allocation; the

difference is less than 2s. When using the model created without workload characterization,

in some case it leads to up to 27s delay in response time with a 15% under-provision of

CPU; in another case, it results in an over-provision of CPU by 15.7% but achieves a

response time only 0.6s better than the former scheme.

CPU/IO-intensive Workload

In the second experiment, we study a more interesting and challenging workload which

includes not only CPU-intensive (Q1 from Cluster I) but also I/O-intensive queries (Q18

from Cluster II and Q6 from Cluster III). As the workload runs, the total percentage of

Cluster I+II in the entire workload is varied from 0.1 to 0.9 (the ratio between Cluster I and

Cluster II is fixed) and the total request rate also varies from 20 to 80 request/minute.

Similarly, different sets of data points are evenly taken from these data ranges for training

(450 data points) and testing (120 data points). The experiment is performed separately

114

using fuzzy-modeling-based resource allocation w/ and w/o characterization. The former

captures the workload using a vector [Request rate, Percentage of Cluster I+II] as the

input, while the latter considers only the total request rate of the workload. Both CPU and

I/O are controlled in the two cases.

115

Error! Reference source not found. and Error! Reference source not found.

compare the VM CPU and I/O allocations in these two cases against the actual CPU and

I/O usages of the VM when the resource is allocated based on peak load. Error! Reference

source not found. compares the workload performance of these two allocation schemes

Figure 5-11 CPU allocations for a CPU/IO-intensive TPC-H workload

Figure 5-12 I/O allocations for a CPU/IO-intensive TPC-H workload

Figure 5-13 Performance for a CPU/IO-intensive TPC-H workload

0

10

20

30

40

50

60

70

80

90

100

[30,
20%]

[30,
40%]

[30,
60%]

[30,
80%]

[50,
20%]

[50,
40%]

[50,
60%]

[50,
80%]

[70,
20%]

[70,
40%]

[70,
60%]

[70,
80%]

CP
U
 A
llo

ca
ti
on

 (%
)

[Request Rate (Query/Minute), Percentage of Cluster I+II (%)]

Actual CPU usage
Fuzzy modeling w/ char
Fuzzy modeling w/o char

0

1000

2000

3000

4000

5000

6000

7000

8000

[30,
20%]

[30,
40%]

[30,
60%]

[30,
80%]

[50,
20%]

[50,
40%]

[50,
60%]

[50,
80%]

[70,
20%]

[70,
40%]

[70,
60%]

[70,
80%]

I/
O
 B
an

dw
id
th
(K
B/
s)

[Request Rate (Query/Minute), Percentage of Cluster I+II (%)]

Actual I/O usage

Fuzzy modeling w/ char

Fuzzy modeling w/o char

0

2

4

6

8

10

12

14

16

18

20

[30,
20%]

[30,
40%]

[30,
60%]

[30,
80%]

[50,
20%]

[50,
40%]

[50,
60%]

[50,
80%]

[70,
20%]

[70,
40%]

[70,
60%]

[70,
80%]

Re
sp
on

se
 T
im

e(
s)

[Request Rate (Query/Minute), Percentage of Cluster I+II (%)]

Peak‐load‐based
Fuzzy modeling w/ char
Fuzzy modeling w/o char

116

against the ideal performance under peak-load-based allocation. The results show that the

fuzzy modeling with workload characterization method can predict the VM’s actual

demands with an average error of 3.5% for both CPU and I/O allocations. It is more

accurate than the case without characterization in which the average error is about 37% for

CPU and 73% for I/O. As a result, in the former case it can always achieve the same level

of performance as in the peak-load-based allocation, with only a 1.5s delay in average

response time; while in the latter case, the response time is always worse than in the peak-

load-based case. In the worst case, it produces either a 36% under-provision of CPU which

causes a 15s delay or a 27% under-provision of I/O for 11s additional delay. Noticed that

the performance in the without characterization case is always worse than the other two

cases due to the misprediction of VM resource demands: although over-provision of either

CPU or I/O does happen, the demands for CPU and I/O cannot be both met at the same

time.

b) RUBiS Experiments

For RUBiS experiment, the same setup as in Chapter 3.4.3 is deployed. The database

tier is hosted on the dedicated VM to be controlled. Realistic workloads are simulated

according to the real traces from the 1998 World Cup site. The workload with fixed

intensity but changing ratio of browsing to bidding request (Error! Reference source not

found.) is performed on the virtualized database.

We compare the performance of the fuzzy model created with workload

characterization versus without it. The former considers both the workload’s intensity and

composition as the input to the modeling whereas the latter considers only the intensity.

117

The composition can be captured by the ratio of two types of queries, the SELECT queries,

which are read-only, and the INSERT and UPDATE queries, which are writes to the

database. These characteristics are captured by interposing a MySQL proxy before the

database tier. Since this experiment is performed completely online, only the first 10 data

points collected are used to initialize the VM’s fuzzy model. Afterwards the model is used

to allocate resources right away and in the meantime it is updated with new observed data

every 10s.

The desired QoS target for these workloads is defined according to the performance of

the database VM under the peak-load-based resource allocation which statically assigns

70% CPU and 320KB/s disk I/O bandwidth. In the experiment, the QoS target is set to

100ms for the average response time within each period. A 10% margin is added to the

resource allocation predicted by the fuzzy model. When the QoS target cannot be met due

to inaccuracy in the model, a backup policy is invoked to allocate a fixed amount of I/O

bandwidth (500KB/s) to the VM temporarily. This backup mechanism allows the

performance loss to be quickly recovered and ensures that the model can be timely updated

to reflect the VM’s current resource needs. It is invoked when two consecutive QoS

violations occur and revoked after the QoS target are met again for three consecutive

periods of time. Afterwards, the fuzzy model updated with the new measurements will be

used again for guiding the resource allocation. Error! Reference source not found. and

Error! Reference source not found. show the I/O predictions and allocations using a

fuzzy model created with or without workload characterization, respectively, for the

changing composition RUBiS workload. Error! Reference source not found. compares

the corresponding performance in both cases with the pre-set QoS target. For the fuzzy

118

modeling with workload characterization, it is able to predict the VM’s resource needs

throughout most of the experiment and require only a few (3 times) invocations of the

backup allocation policy. It can quickly react to the changes in workload composition and

Figure 5-14 Trace for RUBiS with changing composition

Figure 5-15 I/O allocation with workload characterization

Figure 5-16 I/O allocation without workload characterization

Figure 5-17 Performance comparisons for RUBiS workload

0

100

200

300

400

500

600

700

800

0 240 480 720 960 1200 1440 1680 1920

Cl
ie
nt
 S
es
sio

ns

Time (s)

Biding

Browsing

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

I/O
 B
in
dw

id
th
(K
B/
s)

Time(s)

Actual I/O usage

Allocation w/ char

Prediction w/ char

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

I/
O
Ba

nd
w
id
th
(K
B/
s)

Time(s)

Actual I/O usage
Allocation w/o char
Prediction w/o char

1

10

100

1000

10000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Re
sp
on

se
 T
im

e(
m
s)

Time(s)

Fuzzy modeling w/ char
Fuzzy modeling w/o char
SLA

119

deliver the desired QoS for 92% of the time; the average response time is 44.9ms

throughout the entire experiment. However, without characterization, the QoS target is

violated for 15% of the time, and the backup policy is triggered twice more often (7 times).

The resulting average response time of 119.5ms cannot meet the QoS target, almost 3 times

worse than the one with characterization.

Figure 5-18 Performance of a TPC-H workload with 50 request/s

Figure 5-19 Performance of a TPC-H workload with 30 request/s

0

100

200

300

400

2048 1536 1024 512

A
ve
ra
ge
 E
xe
cu
ti
o
n
 T
im

e(
s)

Memory(MB)

Dynamic
Static

0

100

200

300

400

2048 1536 1024 512A
ve
ra
ge
 E
xe
cu
ti
o
n
 T
im

e(
s)

Memory(MB)

Dynamic
Static

120

5.4.3. Host-to-Guest Optimization

a) TPC-H Experiments

This experiment demonstrates the effectiveness of the host-to-guest optimization by

automatically tuning a database system under varying memory availability. An I/O

121

intensive workload consisting of a mix of duplicated copies of Q4, Q6, Q8 and Q14 from

TPC-H queries is run on a database with warm memory, where the query processing can

be done mostly using data cached in memory. The intensity of the workload can be varied

by changing the inter-arrival rate of the queries from 4.8s to 8s with a corresponding request

rate of 50 and 30 queries per minute. To simulate different levels of memory contention,

Figure 5-20 Network bandwidth allocations to TerraFly VM

Figure 5-21 TerraFly’s JCQ settings

Figure 5-22 TerraFly’s performance with different JCQ settings

0

50

100

150

200

250

0 30 60 90 120 150 180 210 240 270

N
et
w
or
k
Ba

nd
w
id
th

Al
lo
ca
tio

n(
M
bp

s)

Time (s)

20

30

40

50

60

70

80

90

100

0 30 60 90 120 150 180 210 240 270

JC
Q

Time (s)

Dynamic JCQ
Static (JCQ = 80)
Static (JCQ =30)

15

16

17

18

19

20

21

22

23

0 30 60 90 120 150 180 210 240 270

R
es
p
o
n
se
 T
im

e(
m
s)

Time(s)

Static (JCQ = 30)
Static (JCQ = 80)
Dynamic JCQ
QoS Target

122

the database VM’s memory allocation is varied from 2048MB, 1536MB, 1024MB to

512MB while the workload is running at a given request rate.

Error! Reference source not found. and Error! Reference source not found.

compare the performance of two TPC-H workloads with different intensities from the

scheme that uses host-to-guest optimization (Dynamic) vs. with-out it (Static). The former

dynamically adapts the ratio between seq and rand as the availability memory changes; the

latter uses a static ratio of 1:4. The result shows that the adaptation improves the database

performance for both workloads as the available memory reduces. For example, an average

of 33.5% improvement in query execution time is achieved when the VM’s memory is

512MB. The improvement increases as the workload becomes more intensive because the

memory contention gets worse. For the workload with 50 request/s, as soon as the memory

allocation is reduced to 1.5GB, about 41% speedup is observed; while for the workload

with 30 request/s, the advantage of optimization becomes evident (27% speedup) only

when the available memory is reduced to under 1GB.

The host-to-guest optimization achieves the above performance improvement because

it enables the database to adapt its query execution strategy as the memory availability

varies. Specifically, it allows the database switch from a random-scan-preferred

configuration to a sequential-scan-preferred one by tuning its ratio of seq vs. rand from the

default 1:4 ratio to 1:16 as the available memory decreases from 2GB to 512MB. When

the memory is sufficient to cache all the queried data, a random-scan-preferred

configuration is advantageous because it scans indexes and accesses less data. When the

123

memory is not sufficient to cache the queried data, the query processing becomes disk

bound where sequential scans are more efficient.

b) TerraFly Experiments

To demonstrate the effectiveness of the host-to-guest adaptation for TerraFly-based

map service, two scenarios are considered in this experiment. In the first scenario, the

amount of available network bandwidth to TerraFly is contended by another VM which

runs an FTP server. The trace in Error! Reference source not found. shows that the

network bandwidth allocated to TerraFly is first reduced from 200 to 100 Mbps as a file

transfer starts on the FTP VM, sustained at 100 Mbps during the transfer, and finally

increased back to 200 Mbps when the transfer completes. With the host-to-guest

adaptation, the network resource availability is explicitly fed back to the TerraFly VM and

used to adapt the JCQ for the map service.

Error! Reference source not found. compares the performance of TerraFly using

three different JCQ settings shown in Error! Reference source not found.: one with a

dynamic JCQ adapted by host-to-guest optimization (Dynamic) versus two using static

JCQ settings (Static). The results show that the host-to-guest adaptation allows the response

time target (20.5ms) to be met throughout the experiment. In contrast, using a static high

JCQ misses the response time target most of the time and causes up to 15% delay in

response time. Although using a static low JCQ can meet the response time target, it fails

to provide a good image quality to map requests and wastes the available network band-

width when it is sufficient. Compared to it, the host-to-guest adaptation is able to fully

utilize the available network resources and improve image quality by 40% in average.

124

125

Figure 5-23 A real TerraFly workload with changing intensity

Figure 5-24 TerraFly’s JCQ settings

Figure 5-25 TerraFly’s performance with different JCQ settings

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
lie
n
t
Se
ss
io
n

Time(hr)

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

JC
Q

Time(hr)

Dynamic JCQ

Static (JCQ = 80)

Static (JCQ = 30)

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

R
es
po

n
se
 T
im

e(
m
s)

Time(hr)

Dynamic JCQ
Static (JCQ = 80)
Static (JCQ = 30)
QoS Target

126

In the second scenario, a fixed amount of network bandwidth (50 Mbps) is allocated to

the TerraFly VM while a real workload collected from the production TerraFly system is

replayed with a 60-fold speedup (Error! Reference source not found.). Although the

network contention does not change in this experiment, the host-to-guest adaptation still

enables TerraFly to adapt its JCQ based on the knowledge of its network bandwidth

availability and workload intensity.

Error! Reference source not found. compares the performance of TerraFly using

three different JCQ settings shown in Error! Reference source not found.. Similar to the

previous experiment, the result shows that the dynamic JCQ setting adapted by host-to-

guest optimization outperforms the static JCQ settings in terms of imagery quality and

response time of the map requests. Using a static high JCQ is not able to meet the response

time target when the workload intensity be-comes high; the scheme with a static low JCQ

cannot provide good quality images even when there is abundant network bandwidth to be

used. In contrast, the host-to-guest JCQ adaptation approach always meets the response

time target and delivers an average improvement of 26.3% in imagery quality (vs. a static

JCQ of 30).

5.4.4. Combining both Guest-to-Host and Host-to-Guest Optimizations

The last experiment further demonstrates the effective-ness of the cross-layer

optimization by combining guest-to-host workload characterization and host-to-guest

database tuning for an OLAP-like database work-load.

An interesting workload is constructed by mixing multiple copies of Q1, Q4, Q6, and

Q14 from the TPC-H queries. To make these queries more diverse in resource usage

127

patterns, distinct query copies are derived from Q4, Q6, and Q14 by modifying the

condition in the where cause of the original query statements. Each copy touches a different

section of the involved tables and the data accessed by different copies is evenly distributed

within the range of a table. In this way, the intensity in I/O can be easily varied by changing

the total number of these copies, while the CPU intensity is varied by changing the number

of copies of original Q1. The experiment is performed in two phases. In Phase 1, the

workload intensity is fixed by running 18 copies of queries in total but the composition is

varied by changing the percentage of Q1’s copies from 17% then to 50% and finally to

83%. In Phase 2, an I/O cap from 3000 to 1000KB/s is set to the VM to simulate different

levels of I/O contention from other VMs while the workload is kept constant with 83% of

Q1.

Using the cross-layer optimization, during Phase 1, the VM’s resource demands are

modeled using the workload characterization result, [Request rate, Percentage of ClusterI],

as the input (Q1 is a CPU-intensive query classified to Cluster I while the others are I/O

Figure 5-26 Performance of a TPC-H workload with both guest-to-host and host-to-
guest optimizations

I/O Cap = 3MB/s

I/O Cap = 2MB/s

I/O Cap = 1MB/s

0

200

400

600

800

1000

1200

17% 50% 83% 83% 83% 83%

A
ve
ra
ge
 E
xe
cu
ti
o
n
 T
im

e(
s)

Percentage of Cluster I (%)

Peak‐load‐based

Cross‐layer Optimization

Non Optimization

Guest‐to‐Host
Optimization phase

Host‐to Guest
Optimization phase

128

intensive and classified to other clusters). When the experiment transits to Phase 2 and I/O

contention is introduced into the system, the cross-layer optimization approach feeds the

I/O pressure back to the guest layer by tuning the database parameters according to the re-

source availability. In comparison, the experiment is repeated with fuzzy-modeling-based

resource allocation but without cross-layer optimization. In this case, during Phase 1, only

the workload intensity is used to create the fuzzy model; during Phase 2, the database

configuration is not adapted and kept static as in Phase 1.

Error! Reference source not found. compares the database’s performance under

fuzzy-modeling-based resource management with cross-layer optimization (Cross-layer

Optimization) and without it (No Optimization) versus the ideal performance under peak-

load-based resource allocation (Peak-load-based). The result shows that in Phase 1, the

performance from using cross-layer optimization closely follows the one under peak-load-

based allocation. It is as much as seven times better than the scheme without cross-layer

optimization. In Phase 2, both approaches suffer from the reduced I/O bandwidth.

However, the cross-layer optimization still achieves about 17% performance improvement

than the scheme without cross-layer optimization. The host-to-guest feedback enables the

database query optimizer to switch from a sequential-scan-preferred plan to an random-

scan preferred plan by tuning the ratio of seq vs. rand from the original 1:4 ratio to 1:1 as

the I/O cap decreases from 3MB/s to 1MB/s. This adaptation improves the performance

significantly because the random-scan-preferred plan uses indexes which require much less

I/O bandwidth than the sequential-scan-preferred one.

129

5.5. Summary

This chapter presents a new cross-host-guest optimization approach based on the

existing fuzzy modeling based resource management by enabling the communication

between VM host- and guest-layer schedulers to optimize the resource allocation and

application performance. The host-layer scheduler exploits guest-layer application-specific

information to characterize VM workload and model its resource demand. The guest-layer

scheduler uses the host-layer feedback to understand the changing resource availability and

adapt its configuration accordingly. As case studies, the proposed approach is applied to

virtualized databases and map services which have challenging dynamic, complex resource

demands and sophisticated configurations. The results demonstrate that the cross-layer

optimization approach significantly outperforms the application-unaware one which treats

VMs as black boxes. It can efficiently allocate both CPU and I/O resources to VMs serving

workloads with dynamically changing intensity and composition and improve the

applications’ performance when under resource pressure.

130

6. CONCLUSION AND FUTURE WORK

6.1. Conclusion

In this dissertation, a fuzzy-modeling-based autonomic resource management system is

first proposed to automatically allocate resources to VMs based on their QoS targets. The

experimental results demonstrate this approach can accurately estimate a VM’s resource

needs for dynamic and complex workloads based on its desired QoS while improving

resource utilization.

However, this modeling-based approach relies on a predefined backup policy to deal

with situations where the VM’s resource demand is misestimated due to dynamic changes

in the VM’s resource usage behaviors. To eliminate the need for such a supplementary

strategy, we proposed another new approach which combines fuzzy modeling with

predictive resource control. This approach allows a VM’s resource allocation to be directly

adjusted based on the application’s performance feedback and the QoS target. It employs

multi-input-multi-output fuzzy modeling which can simultaneously model the resource

usages of multiple VMs and at the same time capture the interference between them. It also

uses live VM migration to further optimize resource usages across hosts. A prototype of

the proposed approach is evaluated on a virtualized system using realistic workloads. The

experimental results show that it is able to not only automatically track the single QoS target

and but also optimize high-level service objective by quickly adapting to changes in the

system. The results also show that the approach can effectively manage over one hundred

concurrent VMs and optimize their performance across multiple hosts.

131

As an extension to the base framework in which four major modules work together to

form a closed control loop, a cross-layer optimization is proposed to enable the

communication between VM host- and guest-layer schedulers and allow them to

collaboratively optimize the resource allocation and application performance. As

challenging case studies, these proposed approaches are applied to the fuzzy-modeling-

based resources management system for virtualized databases and map service.

Experiments based on typical database benchmarks, TPC-H and RUBiS, and a map service

application, TerraFly, show the cross-layer optimization approach can accurately allocate

resource for dynamic and complex workloads and effectively adapt guest-layer’s

configurations according to its resource allocation, significantly outperforming the

application-unaware approaches that treat VMs as black boxes.

6.2. Future Work

In this dissertation, the cross-layer optimization is integrated to one of our resource

management frameworks, the fuzzy-modeling-based one. In our future work, we will

consider applying it to the second solution, the FMPC-based management system to

combine the benefits of host-guest collaboration with predictive control as illustrated in

Error! Reference source not found..

From one aspect, the existing model in the FMPC-based system is a performance

model, where only the measurements of workload performance are served as the inputs.

To enable the guest-to-host optimization, we will consider to involve the workload

characteristics from the application-level knowledge in the model to improve the modeling

132

accuracy. Then a general MIMO model in the FMPC system would be rewritten into the

following format:

Φ , , 1

Where w(t) represents the workload which is characterized based on guest-level

knowledge as we described in Chapter 5.2.2. It will help host-level scheduler adapts to the

dynamics in workloads proactively. However, it is also challenging as the dimension of the

model increases, and the complexity of training and updating the model may increase

considerably.

From another aspect, a host-to-guest layer optimization will be added based on the

existing framework of FMPC. There are also new challenges that need to be well addressed.

For example, how would the host-to-guest layer optimization affect the modeling part?

Since the adaptation of application will further tune guest-level’s application based on the

Figure 6-1 Architecture of cross-layer optimization on fuzzy-modeling-based resource

management system

133

allocation, this may cause more discrepancy between the actual performance measurements

and the prediction from the model, and it is likely that the actual performance would be

better than the predicted one. Either the model needs to be retrained after performance

improvement observed after each adaptation or the mapping between the tunable parameters

and resources availability needs to be considered in the optimizer to produce the

performance prediction to reflect actual performance after tuning. We also need to take care

the system stability issue of adapting the application and its performance model.

The awareness between virtualization software and virtualized application breaks the

transparency offered by traditional full virtualization, but we advocate that this tradeoff is

necessary for business- and mission-critical applications to achieve their desired QoS on

virtualized systems. The benefit of this tradeoff is demonstrated by our initial results

reported in this dissertation. The underlying argument is the same as that drives the success

of paravirtualization [2] which sacrifices complete transparency for lighter-weight and

more efficient virtualization. Although not every virtualized application is capable of

adapting its behavior according to changing resource availability, we believe it will become

a necessity for critical applications as virtualization becomes pervasive. In our future work,

we will study how to create a concise and generic interface for cross-layer optimization

that can support diverse guest operating systems and applications.

134

REFERENCES

[1] VMware, URL: http://www.vmware.com.

[2] P. Barham, B. Dragovic, K.Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt and A. Warfield, “Xen and the Art of Virtualization”, SOSP, 164-177, 2003

[3] Amazon Elastic Compute Cloud, URL: http:// aws.amazon.com/ec2/.

[4] Windows Azure, URL: http://www.microsoft.com/windowsazure/.

[5] Linux Vserver, http://linux-vserver.org/.

[6] OpenVZ, http://wiki.openvz.org/.

[7] J. O. Kephart, D. M. Chess, “The Vision of Autonomic Computing”, IEEE
Computer, 36(1): 41-50, 2003.

[8] S. White, J. Hanson, I. Whalley, D. Chess, and J. Kephart., “An Architectural
Approach to Autonomic Computing”, In Proc. 1st International Conference on
Autonomic Computing (ICAC), 2-9, 2004.

[9] R. Doyle, J. Chase, O. Asad, W. Jin and A. Vahdat, “Model-Based Resource
Provisioning in a Web Service Utility”, USENIX, 4:5-5, 2003.

[10] M. Bennani and D. Menasce, “Resource Allocation for Autonomic Data Centers
using Analytic Performance Models”, ICAC, 229 - 240, 2005.

[11] X. Liu, X. Zhu, P. Padala, Z. Wang and S. Singhal, “Optimal Multivariate Control
for Differentiated Services on a Shared Hosting Platform”, CDC, 3792-3799,
2007.

[12] P. Padala, K. Hou, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal and A.
Merchant, “Automated Control of Multiple Virtualized Resources”,
SIGOPS/EuroSys, 13-26, 2009.

[13] R.Nathuji and A. Kansal, “Q-Clouds: Managing Performance Interference Effects
for QoS-Aware Clouds”, Eurosys, 237-250, 2010.

[14] J. Wildstrom, P. Stone and E. Witchel, “CARVE: A Cognitive Agent for Resource
Value Estimation”, ICAC, 182-191, 2008.

[15] T. Wood, L. Cherkasova, K. Ozonat and P. Shenoy, “Profiling and Modeling
Resource Usage of Virtualized Applications”, Middleware, 366-387, 2008.

135

[16] J. Rao, X. Bu, C. Xu, L. Wang and G. Yin, “VCONF: A Reinforcement Learning
Approach to Virtual Machines Auto-configuration”, ICAC, 137-146, 2009.

[17] S. Kundu, R. Rangaswami, K. Dutta and M. Zhao, “Application Performance
Modeling in a Virtualized Environment,” HPCA, 1-10, 2010.

[18] Z. Gong and X. Gu, “PAC: Pattern-driven Application Consolidation for Efficient
Cloud Computing”, MASCOTS, 24-33, 2010.

[19] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: elastic resource scaling
for multi-tenant cloud systems”, SOCC, 1-14, 2011.

[20] A. Chen, P. Goes, A. Gupta and J. Marsden, “Heuristics for Selecting Robust
Database Structures with Dynamic Query Patterns”, EJOR, 168: 200-220, 2006.

[21] M. Wang, T. Madhyastha, N. Chan, S. Papadimitriou and C. Faloutsos, “Data
Mining Meets Performance Evaluation: Fast Algorithms for Modeling Bursty
Traffic”, ICDE, 507-516, 2002.

[22] L. Zadeh, “Fuzzy Sets”, Information and Control, 1965.

[23] J. Xu, M. Zhao and J. Fortes, “Autonomic Resource Management in Virtualized
Data Centers Using Fuzzy-logic-based Control”, Cluster Computing, 11(3): 213-
227, 2008.

[24] U. Minhas, J. Yadav, A. Aboulnaga, K. Salem, “Database Systems on Virtual
Machines: How Much do You Lose?”, Intl. Workshop on Self-Managing Database
Systems, 35-41, 2008.

[25] A. Soror, U. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis and S. Kamath,
“Automatic Virtual Machine Configuration for Database Workloads”, SIGMOD,
953-966, 2008

[26] G. Weikum, A. Moenkeberg, C. Hasse and P. Zabback, “Self-tuning Database
Technology and Information Services: From Wishful Thinking to Viable
Engineering”, VLDB, 20-31, 2002.

[27] S. Chaudhuri and G. Weikum, “Foundations of Automated Database Tuning”,
ICDE, 104-, 2006.

[28] B. Schroeder, M. Harchol-Balter, A. Iyengar and E. Nahum, “Achieving Class-
based QoS for Transactional Workloads”, ICDE, 153-, 2006.

136

[29] P. Martin, S. Elnaffar and T. Wasserman, “Workload Models for Autonomic
Database Management Systems”, ICAS, 10-, 2006.

[30] T. Wasserman, P. Martin and D. Skillicorn, “Developing a Characterization of
Business Intelligence Workloads for Sizing New Database Systems”, DOLAP, 7-
13, 2004.

[31] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and its Application to

Modeling and Control” TSMC, 15(1):116-132, 1985.

[32] S. Chiu, “Fuzzy Model Identification Based on Cluster Estimation”, Journal of
Intelligent and Fuzzy Systems, Vol. 2, No. 3, 1994.

[33] Google Maps, URL: https://maps.google.com/

[34] Hyper-V, URL: http://msdn.microsoft.com/en-
us/library/cc768520%28v=bts.10%29.aspx

[35] N. Rishe, S.C. Chen, N. Prabakar, M.A. Weiss, “TerraFly: A High-performance
Web-based Digital Library System for Spatial Data Access”, International
Conference on Data Engineering, 2001

[36] B. Craig. "Online Satellite and Aerial Images: Issues and Analysis" North Dakota
Law Review 85 (2007): 547

[37] HP-UX Workload Manager, http://docs.hp.com/en/5990-8153/ch05s12.html.

[38] J. Rolia, L. Cherkasova and C. McCarthy, “Configuring Workload Manager
Control Parameters for Resource Pools”, NOMS, 127-137, 2006.

[39] TPC-H Benchmark Specification, URL: http://www. tcp. org.

[40] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil, K. Rajamani and W.
Zwaenepoel, “Specification and Implementation of Dynamic Web Site
Benchmarks”, WWC-5, 3-13, 2002.

[41] Y. Diao, J. Hellerstein and S. Parekh, “Optimizing Quality of Service Using Fuzzy
Control”, DSOM, 42-53, 2002

[42] dm-ioband, URL: http://sourceforge.net/apps/trac/ioband.

[43] M. Arlitt and T. Jin, “Workload Characterization of the 1998 World Cup Web
Site,” in HP Technical Report, 1999.

137

[44] S. Chaudhuri, “Relational Query Optimization – Data Management Meets
Statistical Estimation”, Communications of ACM, 52(10):86-86, 2009.

[45] G. Jung, M. Hiltunen, K. Joshi, R. Schlichting and C. Pu, “Mistral: Dynamically
Managing Power, Performance, and Adaptation Cost in Cloud Infrastructures”,
ICDCS, 62-73, 2010.

[46] R. Singh, U. Sharma, E. Cecchet and P. Shenoy, “Autonomic mix-aware
provisioning for non-stationary data center workloads”, In Proceedings of the 7th
international conference on Autonomic computing (ICAC '10)2010, 21-30.

[47] D. Goldberg, “Genetic Algorithms in Search, Optimization and Machine
Learning,” Kluwer Academic Publishers, Boston, MA, 1989.

[48] 1998 World Cup Web Site Access Logs, URL:
http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

[49] D. Gupta, L. Cherkasova, R. Gardner and A. Vahdat., “Enforcing Performance
Isolation Across Virtual Machines in Xen,” Middleware, 342-362, 2006.

[50] J. Maciejowski, “Predictive Control with Constraints,” Prentice Hall, 1 edition,
2002.

[51] C. Lu, X. Wang and X. Koutsoukos, “Feedback Utilization Control in Distributed
Real-Time Systems with End-To-End Tasks,” TPDS 16(6): 550-561, 2005.

[52] X. Wang, M. Chen and X. Fu, “MIMO Power Control for High-Density Servers in
an Enclosure,” TPDS, 21(10):1412-1426, 2010.

[53] Y. Huang, H. Lou, J. Gong, T. Edgar, “Fuzzy Model Predictive Control,” IEEE
Transactions on Fuzzy Systems, Vol. 8, No. 6, 2000.

[54] Credit-Based CPU Scheduler, URL:
http://wiki.xensource.com/xenwiki/CreditScheduler.

[55] Freebench, URL: https://code.google.com/p/freebench/

[56] FIU-SCIS website: https://cs.fiu.edu

[57] K. Astrom and B. Wittenmark, “Adaptive Control,” 1995.

[58] Neuro-adaptive Learning, URL: http://www.mathworks.com/
help/toolbox/fuzzy/fp715dup12.html.

138

[59] L.Wang, J. Xu, M. Zhao and J. Fortes, “Adaptive Virtual Resource Management
with Fuzzy Model Predictive Control” FeBID, 7 pages, 2011.

[60] L. Wang, J. Xu, M. Zhao, Y. Tu, and J. Fortes, “Fuzzy Modeling based Resource
Management for Virtualized Database Systems,” Proceedings of the 19th Annual
Meeting of the IEEE International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS2011),
2011, 32-42.

[61] M. Kallahalla, M. Uysal, R. Swaminathan, D. Lowell, M. Wray, T. Christian, N.
Edwards, C. Dalton and F. Gittler, “SoftUDC: A Software-based Data Center for
Utility Computing,” Computer, 37(11): 38-46, 2004.

[62] T. Abdelzaher, Y. Diao , J. Hellerstein , C. Lu and X. Zhu, “Introduction to
Control Theory and its Application to Computing Systems, Performance Modeling
and Engineering “, Springer, 185-215, 2008.

[63] B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, and Z. Wang.
“Probabilistic performance modeling of virtualized resource allocation”, In Proc.
IEEE Int’l Conf. on Autonomic computing (ICAC), 99-108, 2010.

[64] J. Xu and J. Fortes, “A Multi-objective Approach to Virtual Machine Management
in Datacenters,” Proceedings of 8th International Conference on Autonomic
Computing (ICAC 2011), 225-234.

[65] J. Xu and J. Fortes, “Multi-objective Virtual Machine Placement in Virtualized
Data Center Environments,” Proceedings of 2010 IEEE/ACM International
Conference on Green Computing and Communications (GreenCom2010), 179-
188.

[66] R. Chiang, J. Hwang, H. Huang and T. Wood, “Matrix: Achieving Predictable
Virtual Machine Performance in the Clouds”, ICAC, 45-56, 2014.

[67] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini, “DejaVu:
accelerating resource allocation in virtualized environments”, SIGARCH Comput.
Archit. News 40, 1, 423-436, March 2012.

[68] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bianchini, “DeepDive:
transparently identifying and managing performance interference in virtualized
environments”, USENIX ATC'13, 219-230, 2013.

[69] A. Gandhi, P. Dube, A. Karve, A. Kochut and L. Zhang, “Adaptive, Model-driven
Autoscaling for Cloud Applications”, ICAC, 57-64, 2014.

139

[70] Z. Xu, Y. Tu and X. Wang, “Dynamic Energy Estimation of Query Plans in
Database Systems”, ICDCS 2013: 83-92.

[71] L. Chen, H. Shen and K. Sapra, “Distributed Autonomous Virtual Resource
Management in Datacenters Using Finite-Markov Decision Process”,
In Proceedings of the ACM Symposium on Cloud Computing (SOCC’14). Article
24, 13 pages, 2014.

[72] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao and K. Dutta, “Modeling
virtualized applications using machine learning techniques”, In Proceedings of the
8th ACM SIGPLAN/SIGOPS conference on Virtual Execution
Environments (VEE’12) 2012: 3-14.

[73] A. Gulati, G. Shanmuganathan, I. Ahmad, C. Waldspurger, and M. Uysal, “Pesto:
online storage performance management in virtualized datacenters”,
In Proceedings of the 2nd ACM Symposium on Cloud Computing (SOCC’11)
2011, Article 19, 14 pages.

[74] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: elastic resource scaling
for multi-tenant cloud systems”, In Proceedings of the 2nd ACM Symposium on
Cloud Computing (SOCC’11)2011, Article 5, 14 pages.

[75] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu and H. HacigümüŞ, “ActiveSLA: a
profit-oriented admission control framework for database-as-a-service providers”,
In Proceedings of the 2nd ACM Symposium on Cloud
Computing (SOCC’11)2011, Article 15, 14 pages.

[76] T. Salomie, G. Alonso, T. Roscoe and K. Elphinstone, “Application level
ballooning for efficient server consolidation”, In Proceedings of the 8th ACM
European Conference on Computer Systems (EuroSys’13)2013, 337-350.

140

VITA

LIXI WANG

2004 B.S., Computer Science
Nanjing University of Aeronautics and Astronautics
Nanjing, China

2006 M.S., Computer Science
Nanjing University of Aeronautics and Astronautics
Beijing, China

2007-2015 Doctoral Candidate in Computer Science
Florida International University
Miami, FL, USA

PUBLICATIONS AND PRESENTATIONS

L. Wang, J. Xu, M. Zhao, Modeling VM Performance Interference with Fuzzy MIMO
Model, Proceedings of 7th International Workshop on Feedback Control Implementation
and Design in Computing Systems and Networks (FeBID, co-held with ICAC'12), 6
pages, September 2012.

L.Wang, Modeling VM Performance Interference with Fuzzy MIMO Model, Paper
presented at the International Workshop on Feedback Control Implementation and
Design in Computing Systems and Networks, San Jose, CA, September 2012

L. Wang, J. Xu, M. Zhao, Application-aware Cross-layer Virtual Machine Resource
Management, Proceedings of 9th International Conference on Autonomic Computing
(ICAC'12), 13-22, September 2012.

L. Wang, Application-aware Cross-layer Virtual Machine Resource Management, Paper
presented at the International Conference on Autonomic Computing, San Jose, CA,
September 2012.

L. Wang, J. Xu, M. Zhao, Y. Tu, J. Fortes, Fuzzy Modeling based Resource Management
for Virtualized Database Systems, Proceedings of 19th Annual Meeting of the IEEE
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS'11), 32-42, July 2011.

141

L. Wang, J. Xu, M. Zhao, J. Fortes, Adaptive Virtual Resource Management with Fuzzy
Model Predictive Control, Proceedings of 6th International Workshop on Feedback
Control Implementation and Design in Computing Systems and Networks (FeBID, co-
held with ICAC'11), 7 pages, June 2011.

L. Wang, J. Xu, M. Zhao, J. Fortes, Adaptive Virtual Resource Management with Fuzzy
Model Predictive Control, Proceedings of 8th International Conference on Autonomic
Computing (ICAC'11), 191-192, June 2011.

Y. Xu, L. Wang, D. Arteaga, M. Zhao, Y. Liu, and R. Figueiredo, Virtualization-based
Storage Management for High-end Computing Systems, Proceedings of 5th Petascale
Data Storage Workshop (PDSW, co-held with SC'10), 1-5, November 2010.

J. Martinez, L. Wang, M. Zhao, and S. Sadjadi, Experimental Study of Large-scale
Computing on Virtualized Resources, Proceedings of 3rd International Workshop on
Virtualization Technologies in Distributed Computing (held in conjunction with ICAC-
09) (VTDC'09), 35-42, June 2009.

	Florida International University
	FIU Digital Commons
	3-6-2015

	Fuzzy Modeling and Control Based Virtual Machine Resource Management
	Lixi Wang
	Recommended Citation

	Fuzzy Modeling and Control Based Virtual Machine Resource Management

