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ABSTRACT OF THE DISSERTATION 

FUZZY MODELING AND CONTROL BASED VIRTUAL MACHINE 

RESOURCE MANAGEMENT 

by 

Lixi Wang 

Florida International University, 2015 

Miami, Florida 

Professor Ming Zhao, Major Professor 

Virtual machines (VMs) are powerful platforms for building agile datacenters and 

emerging cloud systems. However, resource management for a VM-based system is still a 

challenging task. First, the complexity of application workloads as well as the interference 

among competing workloads makes it difficult to understand their VMs’ resource demands 

for meeting their  Quality of Service (QoS) targets; Second, the dynamics in the 

applications and system makes it also difficult to maintain the desired QoS target while the 

environment changes; Third, the transparency of virtualization presents a hurdle for guest-

layer application and host-layer VM scheduler to cooperate and improve application QoS 

and system efficiency.  

This dissertation proposes to address the above challenges through fuzzy modeling and 

control theory based VM resource management. First, a fuzzy-logic-based nonlinear 

modeling approach is proposed to accurately capture a VM’s complex demands of multiple 

types of resources automatically online based on the observed workload and resource 

usages.  Second, to enable fast adaption for resource management, the fuzzy modeling 

approach is integrated with a predictive-control-based controller to form a new Fuzzy 
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Modeling Predictive Control (FMPC) approach which can quickly track the applications’ 

QoS targets and optimize the resource allocations under dynamic changes in the system.  

Finally, to address the limitations of black-box-based resource management solutions, a 

cross-layer optimization approach is proposed to enable cooperation between a VM’s host 

and guest layers and further improve the application QoS and resource usage efficiency. 

The above proposed approaches are prototyped and evaluated on a Xen-based 

virtualized system and evaluated with representative benchmarks including TPC-H, 

RUBiS, and TerraFly. The results demonstrate that the fuzzy-modeling-based approach 

improves the accuracy in resource prediction by up to 31.4% compared to conventional 

regression approaches. The FMPC approach substantially outperforms the traditional 

linear-model-based predictive control approach in meeting application QoS targets for an 

oversubscribed system. It is able to manage dynamic VM resource allocations and 

migrations for over 100 concurrent VMs across multiple hosts with good efficiency. Finally, 

the cross-layer optimization approach further improves the performance of a virtualized 

application by up to 40% when the resources are contended by dynamic workloads. 
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1. INTRODUCTION 

With the rapid growth of computational power on compute servers and the fast maturing 

of x86 virtualization technologies, virtual machines (VMs [1][2]) are becoming increasingly 

important in supporting efficient and flexible application and resource provisioning. Served 

as powerful platforms for hosting systems, VMs allow applications to be encapsulated along 

with their execution environments and easily deployed on different systems. Virtualization 

is the key enabling technology for building agile datacenters and emerging cloud systems 

[3][4]. It allows a single physical server to be carved into multiple virtual resource 

containers, each delivering a powerful, secure, customizable, and portable execution 

environment for applications. As the level of VM-based consolidation continues to grow, 

there is an increasingly urgent need for virtualized systems to deliver better Quality-of-

Service (QoS) guarantees, so that users are comfortable in running their applications on the 

shared infrastructure. However, currently such systems cannot meet stringent performance 

requirements, particularly not for applications with dynamic and complex behaviors. 

Consequently, examples such as cloud systems cannot support QoS-based Service Level 

Agreements (SLA), whereas users often have to purchase unnecessary resources for their 

VMs. 

Autonomic resource management promises to address these problems for such a VM 

based hosting system. The goal of such a system is two-fold. First, it should be able to 

automatically allocate resources to a VM according to the hosting application’s demand for 

satisfying desired QoS. Second, it should be able to automatically adapt to dynamic changes 
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in the VM’s behavior and timely adjust the resource allocation, so that both resource 

efficiency and QoS can be sustained. However, the complexity and dynamism in the 

virtualized applications and system pose several key challenges for the VM based resource 

management system, which makes it challenging to host application on shared resources 

without compromising the QoS of applications or wasting the resources of the system. 

  First, the complexity of application workloads which often consist of a variety of 

requests with distinct resource usage may lead to not only different levels of but also 

multiple types of virtualized resource demands. The interference between multiple 

consolidated application workloads which compete for resources that cannot be 

strictly portioned may also lead to complex nonlinear resource usage behaviors,.  

 Second, the dynamics in both the applications (e.g., changes in an application 

workload or variation in its QoS target) and the system (e.g., changes in service-

level objectives) require timely control actions in response to the environment 

changes. The control actions should consider both the performance tracking 

accuracy and the system stability, in order to not only maintain the desired QoS 

target for individual applications but also sustain an optimized overall performance 

for system-level objectives.  

 Third, the transparency of virtualization presents a hurdle for guest-layer application 

and host-layer VM scheduler to cooperate and improve application QoS and system 

efficiency. Without any knowledge about the guest-layer application, it is difficult 

for the host-layer scheduler to understand the application’s workload composition 

and detect the intrinsic workload changes; without any knowledge of the host-layer 

scheduler’s resource allocation decisions, it is also difficult for the guest-layer 
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application to adapt its application-specific configuration and improve its 

performance as the resource availability changes. 

 

1.1. Fuzzy Modeling Based VM Resource Management 

In the first resource management approach, fuzzy modeling method is proposed to learn 

and predict a VM’s demands of multiple types of resources based on the observed workload 

intensity and resource usages. This method does not require any a priori knowledge of the 

system’s internal structure and it can efficiently describe complex and nonlinear system 

behaviors through a VM’s fuzzy model which can be learned and updated online. A 

prototype of this fuzzy modeling based resource management approach is built on Xen-

based VM environment for a database hosting system. Databases often serve complex and 

dynamic workloads which consist of a variety of queries with different types and amounts 

of resource demands. Therefore, virtualized databases can be an excellent case study of the 

proposed approach. 

The main contribution of this approach lies in two aspects: first, it can accurately and 

efficiently allocate multiple typs of resources, i.e., both CPU and disk I/O bandwidth, for 

a database VM that is serving CPU and I/O intensive queries while delivering the same 

level of QoS as using peak-load-based resource allocation; second, it can perform the 

resource adjustments online at fine granularity (every 10s) and adapt to dynamic changes 

in the workloads served by the virtualized database. To the best of our knowledge, this is 

the first to study fuzzy modeling for virtualized applications with dynamic, multi-type 

resource needs.  
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The experimental evaluations demonstrate that the fuzzy-modeling-based approach 

improves the accuracy in resource prediction by up to 31.4% and 5.2% compared to the 

conventional regression approaches. Both CPU and disk I/O bandwidth can be efficiently 

allocated online to a VM serving resource intensive workloads. As a result, the QoS target 

is met for 97% of the time and at the same time substantial resources (about 62.6% of CPU 

and 76.5% of disk I/O bandwidth) are saved in comparison to peak-load-based allocation. 

1.2. Fuzzy Model Predictive Control (FMPC) Based VM Resource 

Management 

In the above fuzzy-modeling-based resource management approach, a supplementary 

strategy is employed to deal with the situations where the VM’s resource demand is 

misestimated. However, such an adaptation strategy requires sufficient qualified data to be 

collected within a short time period to update the system model. To address this limitation, 

we propose to integrate the fuzzy modeling approach with a predictive control based 

resource management system which allows a VM’s resource allocation to be directly 

adjusted based on the difference between the application’s performance feedback and the 

QoS target.    

This approach is architected to answer two key questions: first, how to accurately 

capture the complex relationship between resource allocation and application performance, 

and second, how to adaptively optimize the resource allocations for competing VMs as 

changes occur dynamically in the system. The first question is answered by employing the 

fuzzy-logic based modeling method proposed above to learn the relationship between VM 

resource allocation and application performance, which can efficiently capture system 
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behaviors without requiring any a priori knowledge. The second question is addressed by 

using a new predictive controller to predict the resource demands for all VMs and take the 

resource control actions that enable the system to quickly reach its optimization objective. 

These two phases work in a closed-loop manner where the model is constructed and updated 

online and resource allocations are adjusted dynamically in order to track the QoS target 

and adapt to the changes in the system in a timely manner.  

This dissertation also proposes a two-level resource management framework to employ 

the FMPC approach, including the distributed host-level Node Controllers and the cloud 

zone-level Global Scheduler. Each node controller uses FMPC to predict the resource 

demands of its local VMs and optimize the resource allocations according to their QoS 

targets. The global scheduler further improves performance across VM hosts by planning 

VM migrations based on the resource demand estimates from the node controllers. The node 

controllers in turn execute the VM migrations and transfer the performance models of the 

migrated VMs to minimize the impact of migrations on application performance. 

This proposed approach was prototyped on Xen-based virtualized systems and 

evaluated using typical benchmarks. The results demonstrate that FMPC can accurately 

estimate the resource demand for a VM running dynamically changing workload and 

quickly achieve the desired QoS target. FMPC can also capture the complex behaviors of 

resource competing VMs and optimize the resource allocations according to their QoS 

targets. It substantially outperforms the traditional linear model predictive control (LMPC) 

approach. Furthermore, the proposed two-level resource management framework can 

effectively optimize the performance for more than 100 concurrent VMs running dynamic 

workloads across multiple hosts. 
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1.3. Cross-Layer Optimization Based VM Resource Management 

Based on the above fuzzy-modeling and control based resource management framework, 

the third component of this dissertation proposes cross-layer optimization which allows 

certain awareness and cooperation between a VM’s host and guest in order to improve 

application performance and meet its QoS target. Specifically, two aspects of such cross-

layer optimization are explored. First, guest-to-host optimization exploits guest-layer 

application knowledge to capture dynamic workload characteristics and improve modeling 

of VM resource usage. Second, host-to-guest optimization enables host-layer scheduler to 

feedback resource allocation decision and adapt guest-layer application configuration. 

These two aspects of cross-layer optimization are integrated into the aforementioned fuzzy-

modeling-based resource management system which uses fuzzy logic to model VM 

resource demands online and allocate resources dynamically according to application QoS 

requirement. 

As case studies, the proposed approach is applied to virtualized databases and map 

services which have challenging dynamic, complex resource demands and sophisticated 

configurations. Specifically, for databases, the proposed approach characterizes query 

workloads based on a database’s internal cost estimation and adapts query executions by 

tuning the cost model parameters according to the available storage bandwidth and memory 

capacity. For map services, it adapts the quality of returned map imagery in order to meet 

the response time target as the workload intensity and available network bandwidth change 

over time. These case studies demonstrate the effectiveness of this approach and provides 

an experimental evaluation. 
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This approach is the first to study cross-layer optimization in VM resource management, 

considering both guest-to-host workload characterization and host-to-guest application 

adaptation. With the guest-to-host workload characterization, resources can be efficiently 

allocated to database VMs serving workloads with changing intensity and composition 

while meeting the QoS targets, improving the database performance by 17% compared to 

the allocation scheme without workload characterization. With the host-to-guest application 

adaptation, the performance of TPC-H-based workloads is improved by 17% while a map 

request workloads is improved by 15% in response time and 40% in map imagery quality, 

compared to schemes without adaptation 

1.4. Organization of the Dissertation 

The rest the dissertation presents the details of the three research components mentioned 

above. Chapter 2 introduces the background and related work. Chapter 3 presents the fuzzy 

modeling based resource management approach and discusses the management of 

virtualized database applications as a case study. Chapter 4 discusses the FMPC approach 

which integrates fuzzy modeling with predictive control for adaptive resource management 

in a dynamic system. Chapter 5 presents the cross-layer optimization approach which 

enables cooperation between a VM host and guest in order to improve application 

performance and resource usage efficiency. Finally, Chapter 6 concludes the dissertation 

with an outline of the future work. 
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2. BACKGROUND AND RELATED WORK 

2.1. VM Based Computing System 

The emergence of VMs is driven by the fast maturation and wide availability of 

virtualization technologies, as well as the rapid growth of computing power on modern 

computer systems. On one hand, VM technologies are already efficient and reliable enough 

to host mission-critical applications, and they are widely available for the virtualization of 

various types of system; on the other hand, the ever increasing computing power of today’s 

computers has provided the necessary resources to host VMs. In particularly, multi-core and 

many-core CPUs are quickly emerging on not only high-end systems but also consumer 

products. VMs are particularly suited to provide space-sharing of resources for such 

systems.  

The system-level VMs [1][2], which are based on the virtualization of an entire physical 

host’s resources, including CPU, memory, and I/O devices, presenting virtual resources to 

the guest operating systems and applications. Such VMs are mainly implemented by the 

layer of software called Virtual Machine Monitor (VMM, a.k.a. hypervisor). Although our 

proposed techniques can also be applied to some other types of virtualization (e.g., OS-

extension based VMs [5][6]), those are not the focus of this dissertation.  

This dissertation considers the use of dedicated VMs to host different applications and 

allow them to transparently share the underlying resources. Because the multiplexing of 

applications to resources is provided at a lower level of the system, it has the following 

advantages compared to traditional OS-based resource sharing:  
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 VMs provide strong isolation for resource sharing, allowing applications on one VM 

to be protected from failures and security breaches occurred on another concurrently 

hosted VM;  

 Virtualization supports flexible allocation of various types of resources to VMs, and 

VM migration further enables dynamic balancing of resource usages across physical 

hosts;  

 VMs allow application-tailored customization of their execution environments, 

including OSes and libraries, and enable applications to be seamlessly deployed onto 

resources with heterogeneous configurations.  

 Virtualization provides promising platforms for building agile datacenters and emerging 

cloud systems [3][4]. In such a virtualized system, physical servers can be carved into 

multiple virtual resource containers, each delivering a powerful, secure, customizable, and 

portable execution environment for applications by hosting applications on dedicated VMs. 

As the level of VM-based consolidation continues to grow, there is an increasingly urgent 

need for virtualized systems to deliver better Quality-of-Service (QoS) guarantees, so that 

users are comfortable in running their applications on the shared infrastructure. However, 

currently such systems cannot meet stringent performance requirements, particular not for 

applications with dynamic and complex behaviors. Consequently, examples such as cloud 

systems cannot support QoS-based Service Level Agreements (SLA), whereas users often 

have to purchase unnecessary resources for their VMs. 
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2.2. Autonomic VM Resource Management 

VM-based application hosting allows dynamic resource allocations based on the 

demands from applications, thereby improving the overall resource utilization. However, a 

key challenge to the success of this approach is how to allocate resources to a VM to achieve 

both the application desired QoS and the system desired resource efficiency, and how to do 

so for all the VMs automatically and continuously. To address this challenge, autonomic 

computing techniques can be employed to realize self-managing of VM resource 

configurations according to the high-level application performance and resource utilization 

objectives [7]. A Monitor-Analyze-Plan-Execute (MAPE) control loop [8] can be deployed 

to monitor the VM’s workload demand, analyze its resource needs, plan its resource 

configuration, and then execute it accordingly. This dissertation follows this approach to 

build autonomic systems for the resource management of VM based hosting systems. 

Various solutions have been studied in the literature to address the problem of 

automatically deciding a VM’s resource allocation based on its hosted application’s demand 

and QoS requirement. We classify the related work into three categories: (1) Queuing model 

based approach, (2) control theory based system, and (3) machine learning techniques. In 

this dissertation, our proposed resource management solutions belong to the second and 

third categories. 

2.2.1. Queuing Model Based Resource Management 

The first category of solutions employs queuing theory to construct analytical 

performance models for virtualized applications. For example, Doyle et al. derive analytical 

models from basic queuing theory to predict response times of Internet services under 
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different load and resource allocation [9]; Bennani et al. consider using multiclass queuing 

networks to predict the response time and throughput for online and batch workloads on 

VM based application environments [10]; Gulati et al. apply queueing model to build 

approximate IO performance model in a storage management system for virtualized data 

center[73]. However, solutions of this type are restricted by their often simplified 

assumptions on a virtualized system’s internal structure, and are difficult to capture the 

system’s complex resource usage behavior. Although Gandhi et al. employs a statistical 

technique to adapt the parameters for a queueing theoretic model to capture dynamics in the 

system without offline benchmarking, it focuses on more coarse-grained application scaling 

in the cloud [69]. 

2.2.2. Control Theory Based Resource Management  

The second category of solutions applies control theory to adjust VM resource allocation 

and achieve the desired application performance or system-level objective. Such solutions 

often assume a linear relationship between QoS parameters and control parameters and 

involve a system identification phase to train the model parameters. In addition, the control 

parameters typically must be specified or configured offline on a per-workload basis. For 

example, Liu et al. consider the complex interactions and dependencies among different 

application tiers hosted on VMs and optimize their CPU allocations in order to achieve QoS 

differentiation among the multi-tier applications [11]. Its follow-up work [12] builds an 

online ARMA model for each application to represent the relationship between the 

allocations of multiple resources and normalized performance when the application tiers are 

hosted on VMs spanning across physical nodes. Linear MPC has also been studied to 
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capture the last-level cache interference between concurrent VMs and compensate its 

performance impact [13], which also points out that a nonlinear model can model such 

interference much more accurately. In a typical linear-model-based MPC approach, a linear 

model is assumed to approximate the nonlinear behavior within a limited region of an 

operation point while it can be updated adaptively as the system moves from one operating 

point to another. However, it remains challenging to perform optimized control 

continuously over the entire operating space. 

In the related work on other aspects of system management, Wang et al. uses MPC to 

optimize the power consumption for multiple servers [51]; Lu et al. applies MPC to the 

control of CPU utilization in a highly coupled distributed real-time system [52]. 

In comparison, we combine the strength of machine learning with control theory, which 

does not require any a priori knowledge of the VM’s system model, and can efficiently 

model a nonlinear system with dynamically changing resource usage behaviors. Compared 

to adaptive linear models in traditional control system, we build continuous nonlinear 

models to capture the system’s entire behavior more accurately and allow optimized 

resource allocation over the entire operating space.  

2.2.3. Machine Learning Based Resource Management 

In the third category of solutions, machine learning techniques are extensively studied to 

address several major problems in VM-based resource management system.  

A variety of machine learning techniques are applied to system modeling for prediction-

based resource management. For example, simple regression method is used to predict the 

performance impact of VM memory allocation [14]; Regression method is also employed 



13 
 

to map a resource usage profile obtained on a physical system to that on a virtualized system 

[15]. However, these solutions often unable to capture the nonlinearity in a virtualized 

system’s behaviors. Specially, their modeling accuracy is shown to be poor in modeling the 

performance of complex hosting applications [17]. Artificial neural network (ANN) and 

support vector machine (SVM) are then explored to build multi-dimension performance 

models to predict the resource needs of hosting applications given certain performance 

target [17][72]. These solutions identify three control knobs, CPU, memory limits, and disk 

I/O latency as the inputs of the model and collects performance measurements under various 

allocation configurations to build offline non-linear model to capture complex application 

behaviors. Compared to such a typical performance modeling approach, we focus on the 

autonomous management of both CPU and disk I/O allocations for virtualized applications 

in an online, adaptive way. The performance model used in our fuzzy model predictive 

control approach can be initialized using a small set of training data collected as the system 

starts. Online adaptive control is then enabled to adapt the model continuously to reflect the 

system changes by feed backing recent observations to the controller. Instead of evaluating 

the overall accuracy for modeling static application workloads, we demonstrate the 

effectiveness of our approach in tracking online performance target for representative 

workloads which change dynamically over time. 

Other popular machine learning techniques also have been widely studied for online 

management scenarios. Reinforcement learning technique is used to automatically tune VM 

resource configuration such as CPU and memory to achieve good performance for hosting 

applications [16]; Signal processing technique is first employed to predict repeating 

resource usage patterns for applications and hosts in a cloud [18][19] and later used to 
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achieve online adaptive padding when resource needs are under-estimated [74]. Compared 

to those solutions which treat a VM as a black box, our application-aware management 

solutions takes advantage of application-specific knowledge to effectively capture the 

workload patterns and proactively optimize guest level performance. Clustering and 

classification methods are utilized in [66][67] to adapt resources allocations for dynamic 

workloads on the fly but these solutions still rely on offline profiling on small set of 

representative workloads. 

In the related research on workload-aware resource management, k-means clustering 

combined with queuing models is employed to characterize workload with changes in both 

volume and mix for predicting server capacity [46]. In comparison, our workload 

characterization is performed more efficiently by leveraging the knowledge on resource 

estimation directly from the hosted application to cluster its workloads 

Other related works have shown promising results for VM provision and configuration 

from a long-term prospective; mathematical models and clustering techniques are combined 

to detect interference between co-hosted VM and therefore guide VM placement [68]; 

Markov Decision Process (MDP)-based algorithm is used to make efficient VM migration 

decisions for long-term load balance [71]. While our solution focuses on the fine-grained 

resource allocations for VMs within a host, e.g., allocating CPU time slices and I/O 

bandwidth at short time scale, we also supports resource optimization across hosts in the 

units of VMs at a larger time scale through VM migration based on a two-level resource 

management framework.   
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2.3. Virtualized Database Hosting Systems 

In the related research of virtualized database hosting systems, Farooq et al. 

experimentally evaluated VM-based databases and showed that the overhead is very small 

compared to natively hosted databases [24], which also confirms the feasibility of such 

approaches. Soror et al. address the problem of automatic resource configuration for 

database VMs by calibrating database’s internal query cost model [25]. However, this work 

treats a workload as a static entity with a fixed set of queries, so the performance considered 

is the overall runtime and the VM configuration is done statically for the entire workload. 

The offline calibration process considers VM’s use of CPU, memory, and I/Os as 

independent from each other, which may not hold due to the complexity of resource 

virtualization. When the database’s cost model is inaccurate, this work employs online 

refinement by assuming a linear resource usage model. Therefore, it is unclear how this 

approach would apply to and how well it would perform for a workload with complex 

resource usage and dynamically changing behavior. In contrast, our application-aware 

approach uses database cost model only as a tool to discover workload composition, but not 

for directly estimating VM resource demands, thereby avoiding the well-known inaccuracy 

inherent to database cost models. In our solution, we more realistically treat a workload as 

a non-stationary time series and considers fine-grained query performance needs. The VM’s 

complex resource usage model is automatically learned and adapted online without any a 

priori assumption. 

Xiong et al. build probability-based classification model for incoming queries to make 

admission control decisions for database system to meet expected performance target [75]. 

Salomie et al. exploit ballooning technique to reallocate RAM for database system to 
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preserve SLAs while maximizing utilization[76]. Other related autonomous database work 

[26][27][28] focuses on a database’s internal tuning and query optimization. Those solutions 

are all orthogonal and complementary to the problem addressed by this dissertation, which 

focuses on the resource allocation to an entire database VM.  

Previous work on workload characterization [29][30] also considers it as the key to 

understanding the resource intensity of a database workload. In these studies, a workload is 

often described with time-invariant structure and parameters, which is far from the real-

world situations. We incorporate both of these two aspects in fuzzy-modeling-based 

resource management of virtualized databases. It improves the static workload 

characterization method by allowing online and adaptive characterization and optimizes the 

performance of virtualized databases by further tuning database parameters according to the 

adjustment in resource allocations. 
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3. FUZZY-MODELING BASED RESOURCE MANAGEMENT 

Virtual machines (VMs) [1][2] are powerful platforms for hosting a variety of 

applications. For application providers, VMs allow fine-tuned applications to be 

encapsulated along with their execution environments and easily deployed as appliances on 

different systems. For resource owners, VMs support flexible resource allocation to both 

meet application demands and convenient resource sharing among applications. 

Virtualization is also the enabling technology for the emerging cloud computing paradigm 

[3][4], which further allows highly scalable and cost-effective application hosting 

leveraging its elastic resource availability and pay-as-you-go economic model. However, 

due to the highly complex and dynamic nature of many applications, it is still challenging 

to efficiently host them using virtualized resources. For example, typical database 

applications have to serve dynamically changing workloads consisting of a variety of 

queries and consuming different types and amounts of resources. This makes it difficult to 

host such applications on shared resources without compromising Quality of Service (QoS) 

or wasting resources. 

To address the above challenges, this chapter presents a fuzzy-modeling based approach 

for on-demand allocation of multiple types of resources to a VM running dynamic and 

complex workloads while meeting the QoS requirement. Without any a priori knowledge 

of the system’s internal structure, the fuzzy modeling approach can accurately describe 

complex and nonlinear system behaviors and can dynamically adapt to the changes in 

workload. 
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3.1. Motivation 

3.1.1. Virtualized Hosting System 

Traditionally, applications are hosted on dedicated physical servers that have sufficient 

hardware resources to satisfy their expected peak workloads with desired QoS. However, 

this is often inefficient for the real-world situations in many application domains such as e-

business [20] and stream data management [21], where the workloads are intrinsically 

dynamic in terms of their bursty arrival patterns and ever-changing unit processing costs. 

Even under domains where traditional static workload exists, it can dynamically switch 

from one workload to another at runtime. For example, an online vendor database that serves 

large number of user queries during the day may switch to internal bookkeeping jobs early 

in the morning.  

Therefore, the limitations of the traditional application hosting approach are two-fold. 

First, peak-load based resource provision leads to overprovision and thus underutilization 

of resources for normal state workloads. This can cause considerable infrastructural and 

operational overhead. Second, as a steady-state workload demand exceeds its previously 

expected peak value, the application performance may drop dramatically due to overload, 

unless it can be moved to a more powerful server through a lengthy relocation process. 

Using VMs to host applications can effectively address the above limitations, because 

virtualized resources, including CPU, memory, and I/O, are decoupled from their physical 

infrastructure and can be flexibly allocated to the application as needed. Virtualization can 

consolidate many dedicatedly provisioned physical servers into a small number of shared 

ones, where each of them can be carved into multiple virtual resource containers to provision 
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resources to applications. By hosting the applications on dedicated VMs separately, it allows 

the application to share the consolidated resources with others with strong isolation. It also 

allows the resource allocation to the application VM elastically grow and shrink based on 

the application workload’s demand. In addition, application VMs can be dynamically 

migrated across physical machines for resource optimization. 

Virtualization also offers a new paradigm for application deployments. Modern software 

system such as database have become rather sophisticated, where their installation, 

configuration, and tuning often require substantial domain knowledge and experience as 

well as considerable efforts for instance from the experts, for instance, database 

administrators (DBA). This presents a hurdle to the wide deployment and effective use of 

applications in traditional hosting. VM-based hosting allows carefully installed and 

configured applications to be distributed as simply as copying the data that represent the 

application VMs. For example, a DBA only needs to install, configure, and tune a database 

once in the environment provided by a VM. With that, the deployment of the database on a 

new host only entails transferring the VM data to the host, creating a new VM instance from 

the data, and starting the new database that is already deployed in the VM. In addition, this 

approach allows applications to be quickly replicated and distributed for performance and 

reliability improvements.  
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Figure 3-1 CPU models for TPC-H experiment 

 

 
Figure 3-2 CPU models for RUBiS experiment 

 

 
Figure 3-3 I/O models for RUBiS experiment 
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3.1.2. Non-linearity in Virtualized System 

The major difficulty of online resource management for a virtualized hosting system lies 

in how to model its intrinsically dynamic and complex behavior in an accurate and efficient 

way. Commonly used linear modeling methods are no longer sufficient for modeling such 

a system whose workload consists of different requests with diverse usage of multiple types 

of resources. Either the bursty arrivals of requests or the transitions between different types 

of requests in the workload may lead to more complex behavior of the virtualized 

application. Here we use several concrete examples to demonstrate the nonlinearity in a 

database VM’s resource usage behavior and the advantage of fuzzy modeling.  

In the first example, a synthetic database workload based on a sequence of TPC-H [39] 

queries is executed on a database VM. We gradually increase the workload intensity by 

adjusting the query request rate until the virtualized database becomes saturated. Figure 3-1 

plots the observed average CPU usage of the database VM as the request rate is increased 

from 35 to 75 request/minute. The nonlinearity in such an OLAP database is evident as the 

request rate exceeds around 55 query/minute and the system becomes saturated.  

The second example considers a typical multi-tier OLTP benchmark, RUBiS [40]. We 

fix the database tier’s query workload intensity by running 1000 concurrent client sessions 

in RUBiS. But we vary the composition of the query workload by increasing the ratio of 

bidding and browsing requests to the web tier which correspond to read and write queries, 

respectively, to the database tier. Nonlinearity is apparent in the CPU and disk bandwidth 

usages (Figure 3-2 and Figure 3-3) of such an OLTP database’s behavior, even though the 

system is not under saturation. 
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We then study the accuracy of applying fuzzy modeling to the database VMs in the above 

two examples and compare it to another two commonly used modeling methods, the simple 

linear regression and the more complex second-order polynomial fitting. The models 

created by these different methods along with the measured data are shown in Figure 3-2. 

The figure also shows their norm of the residuals, a common metric for evaluating the 

goodness of a model, which is defined as the square root of the sum of the squares of the 

differences between the predicted values and the actual values. The results show that linear 

model (linear) poorly fits the data points; the polynomial model (polynomial) can only 

reflect the trend of the resource need but cannot predict accurately the amount of necessary 

resources; only the fuzzy model is accurate regarding the entire data set which represent the 

complete resource usage behaviors of the database VMs. As we will further demonstrate in 

Section 3.3, our proposed fuzzy-modeling-based approach outperforms others in terms of 

its accuracy and efficiency.  

Note that such modeling-based resource management is different from a typical 

feedback-control-based approach in which the application’s actual performance is used to 

directly adjust the resource allocation in order to achieve the QoS target. In our modeling-

based approach, a model is first built to capture the relationship between the application 

workload and its resource needs for the QoS target, and then used to predict the necessary 

resource allocation for the current workload demand. Although fuzzy-logic-based feedback 

controllers also exist [41], the key difference between our approach and those still lies in 

the fact that fuzzy logic is used to build a model for the managed system instead of to directly 

decide how to control the system.  
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3.2. Background in Fuzzy-logic Based Modeling 

Fuzzy modeling combines fuzzy logic with mathematical equations to describe the 

discovered patterns of system behavior and to guide the control strategies of the system [31]. 

A fuzzy model is a rule base which consists of a collection of fuzzy rules in the form of “If 

x is A then y is B”, where A and B are determined by fuzzy sets with associated membership 

functions. Contrast to a crisp set, a fuzzy set allows partial set memberships which can be 

quantified into numeric values based on a membership function. Commonly used 

membership functions are Gaussian, Sigmoidal, Triangular, Trapezoidal function, etc. The 

fuzzy rules in a fuzzy model are trained using the input (x) and output (y) observed from the 

system and together they compose the model representing the system behavior. 

 While building a fuzzy model, data clustering techniques (e.g.,[32]) are often employed 

to discover the important features of the system and derive a concise representation of the 

system’s behavior. Each cluster is treated as a fuzzy set and then each set is associated with 

a fuzzy rule. As a result, only a small number of fuzzy rules are needed in the fuzzy model. 

For example, the model for a database VM from the experiment discussed in Section 3.3.2 

is as follows, 

 R1: If [C1, C2]T is in cluster1, then rCPU = [8.8 6.3][C1, C2]T  + 3.1 

 R2: If [C1, C2]T is in cluster2, then rCPU = [-0.5 1.5][C1, C2]T  + 88 

 R3: If [C1, C2]T is in cluster3, then rCPU = [12.8 0.5][C1, C2]T  + 41 

 R4: If [C1, C2]T is in cluster4, then rCPU = [8.3 2.1][C1, C2]T - 68 

The input of the model is the query workload described by a vector of request rates of two 

types of queries, [C1 C2]T, while the output of the model is the CPU resource usage, rcpu. 
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Given a total of 225 input-output data pairs measured in the experiment, clustering 

technique is used to produce only 4 clusters which can effectively represent the entire 

dataset.   Each cluster is then treated as a fuzzy set and associated with a fuzzy rule as part 

of the database VM’s model. 

 The mapping from a given input to an output on a fuzzy rule base is called fuzzy 

inference, which entails the following steps: 1) Evaluation of antecedents: the input 

variables are fuzzified to the degree to which they belong to each of the appropriate fuzzy 

sets via the corresponding membership functions, 2) Implication to consequents: 

implication is performed on each fuzzy rule by modifying the fuzzy set in the consequent 

to the degree specified by the antecedent; 3) Aggregation of consequents: the outputs of all 

the fuzzy rules are aggregated into a single fuzzy set which is then inversely translated into 

a single numeric value through a defuzzification method. Following the above example, 

given a specific workload input [C1, C2]T, the fuzzy model learned from the TPC-H based 

experiment can be used to predict the CPU demand rcpu following the above steps. Note that 

this fuzzy-modeling approach is fundamentally different from traditional rule-based system 

management approach [37][38]. The latter is based on the use of a set of event-condition-

action rules that are triggered only when certain events happen and some preconditions are 

met. In such an approach, the rules are typically specified by system experts, which is often 

intractable to apply to a complex system because of the difficulty in defining thresholds and 

corrective actions for all possible system states. In contrast, a fuzzy model is built for the 

entire input space of the system and can be used for continuous control, where the fuzzy 

rules representing the model are created automatically from the observed input-output data. 
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3.3. Fuzzy Modeling Based VM Management 

Figure 3-4 illustrates the architecture of our proposed resource management for VM-

based applications based on the aforementioned fuzzy modeling approach. This system 

consists of four key modules. As a workload executes on the application VM, the 

Application and VM Sensors monitor the workload W(t), its performance P(t), and the VM’s 

resource usage R(t). With this model and the current workload W(t), the Resource Predictor 

estimates the resource need for time t+1 and the Resource Allocator adjusts the allocation 

accordingly. Together, these modules form a closed-loop for the VM’s resource control and 

optimization. They are described in detail in the rest of this section.  

3.3.1. Application and VM Sensors 

In order to modeling resource usage for the application workload, first of all the workload 

needs to be abstracted as one components of the inputs for the model. Application Sensor is 

responsible for extracting the characteristics of a workload that is relevant to its resource 

   

Figure 3-4 Architecture of the autonomic resource management system 
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usage behaviors when executed on an application VM. Such characteristics provide 

important inputs to the effective modeling and prediction of an application VM’s resource 

needs. A commonly used workload characteristic is the request rate which describes the 

workload’s overall intensity and is often strongly correlated with its resource demand. 

However, the characterization of an application workload is more challenging, because it 

can consist of different request with diverse use of multiple types of resources. To address 

this challenge, we propose to characterize a workload by first classifying its requests into a 

small number of groups based on their resource usage patterns and then describing the whole 

workload as a vector of arrival rates of these groups. This workload characterization process 

can be done by leveraging the intimate knowledge of application, for example we make 

advantage of a database’s internal cost model to clustering queries according to the estimates 

on their resource usage, which will be discussed in details based on a cross-layer 

optimization approach in Chapter 4.3. 

The workload is characterized by the Application Sensor online periodically, in order to 

reflect the workload’s current characteristics and used as input to the Adaptive Learner 

described below for modeling the VM’s current behavior. Note that, the workload of current 

time step t is used as the prediction of the workload of the next time step t+1 based on the 

assumption that no sudden change happened within one period of time. Therefore, W(t) is 

also used as the input for the Resource Predictor discussed below to estimate the resource 

demand R(t+1). In our future work, we will consider more advanced workload prediction 

using forecasting methods.  

The VM Sensor monitors a VM’s resource consumption, which is the other key piece of 

information for modeling the VM’s resource usage behavior. The monitoring has to be done 
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outside of the VM, because the application’s resource usage inside of the VM does not 

truthfully represent its entire VM’s resource usage which entails overhead from both the 

guest operating system and the use of virtualization. The VM Sensor in our system monitors 

multiple types of resources including CPU, memory, and disk and network I/Os, as a 

database VM can make intensive use of multi-type resources.  

In addition to the information about application workload and VM resource usage, the 

proposed system also needs to monitor the application’s current performance, in order to 

determine whether the current resource allocation can meet the desired QoS. This 

measurement is also done by the Application Sensor, using the typical performance metrics 

such as throughput and response time. Note that we consider a workload as a continuous, 

dynamic process. Therefore, the performance reported by the Application Sensor is fine-

grained, periodically taken measurements (e.g., every 10s), rather than the overall value 

measured only once for the entire workload. The Application Sensor can be generally 

implemented as a proxy that is inserted between the client and application VM server, so it 

can forward requests to the application and meanwhile measure their performance. 

3.3.2. Adaptive Learner and Resource Predictor 

The Adaptive Learner creates and updates the model that represents the relationship 

between an application workload and its VM’s resource need. It employs the fuzzy 

modeling approach to automatically discover this relationship, where fuzzy rules are 

constructed based on the input and output data pairs, <W(t), R(t)>, collected by the 

Application and VM Sensors. Both the workload input W(t) and the resource usage output 

r(t) can be vectors with multiple dimensions. For W(t), each dimension represents a certain 
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characteristic of the workload and for R(t) each dimension maps to one type of resources. 

In order to learn a model that represents the resource needs of the VM for a specific QoS 

target, only qualified input-output data pairs <W(t), R(t)> whose workload performance P(t) 

meet the QoS target are fed to the Adaptive Learner. In this way, the resulting model trained 

based on the filtered data can capture the VM’s resource needs in order to meet the given 

QoS target. When the QoS target changes, the model will be different as the qualified 

training data change. 

While creating a fuzzy rule base from the qualified input-output data, it is inefficient to 

generate one rule for every specific data pair. In order to build a concise fuzzy rule base 

with a small number of rules that can still effectively represent the VM’s behavior, a 

clustering method is used to group similar data points into clusters. In particular, the 

Adaptive Learner adopts an efficient one-pass clustering algorithm, subtractive clustering 

[32]. Each resulting cluster exemplifies a representative characteristic of the system 

behavior and can be used to create a fuzzy rule accordingly.  

The Adaptive Leaner generates Sugeno-type fuzzy rules [31] from the clustered data for 

modeling the application VM. This type of fuzzy rules uses a crisp, linear or constant 

function as the membership function, which is suitable for mathematical analysis. Suppose 

for input the workload W(t) is described by N different characteristics, [C1, C2, …, CN] and 

for output, two types of resources, CPU and I/O, [RCPU, RIO], are consumed. If K clusters 

are formed from all the data pairs, then K rules are produced for this fuzzy model. The rule 

base is constructed as follows: 

Ri: IF input [C1, C2, …, CN] is in cluster i, 

THEN output [RCPU, RIO]T = Ai[C1, C2, …,CN]T+bi 
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Each fuzzy rule is generated in a way that the corresponding cluster specifies a fuzzy set 

in the antecedent associated with a Gaussian membership function, e , where 

the Gaussian center c is set as the center of the cluster, and the parameter 	is equal to the 

radius of the cluster. We choose Gaussian membership function for specifying fuzzy sets in 

order to provide a smooth output surface. In the consequent of a fuzzy rule, the output R(t) 

is a linear function of W(t), where the matrix Ai and vector bi are fitting parameters estimated 

using the least-squares method. 

The above modeling is performed periodically as workloads are executed on the 

application VM, and it is capable of dynamically adapting to transitions in the VM’s 

resource usage behaviors. Such a transition can be triggered by not only the change of the 

workload’s intensity but also the change of its composition of queries with different resource 

needs. To adapt to such dynamic changes, the Adaptive Learner updates the VM’s resource 

usage model at the end of every control period based on the latest data collected by the 

Sensors. So when a transition occurs, new data points that reflect the workload’s current 

characteristics and the VM’s current resource usages are used for modeling. As those data 

points become part of the online training data, the clustering result will be updated with a 

possibly different number clusters with different centers, so that a new set of fuzzy rules can 

then be created to represent the VM’s current behavior. In this way, both the system 

structure and parameters are learned and adapted in real time from online data streams. The 

system model is gradually evolved instead of using fixed structure model, and the learning 

process is incremental and automatic. Owing to the speed of subtractive clustering and fuzzy 
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modeling, this whole model updating process can be completed quickly (typically under a 

second) for fine-grained resource control interval. 

With the fuzzy model created from the Adaptive Leaner, the Resource Predictor 

performs fuzzy inference to generate an estimate of the resource need R given the workload 

input W. Based on the aforementioned clustering-based Sugeno-type fuzzy model, a 

Gaussian membership function is used in the antecedent of each rule to fuzzify the input W 

to its membership of the cluster in every rule. The membership value computed is then used 

as the weight for implication. In defuzzification, the consequent output of each rule is 

generated by the linear equation specified by associated parameters. The final output derived 

by aggregating all the weighted fuzzy outputs becomes the amount of resources estimated 

by the Predictor. This estimation is then sent to the Resource Allocator to guide the VM’s 

resource allocation. 

3.3.3. Resource Allocator 

In a virtualized system, a VM serves as a resource container to the hosted database, where 

different types of resources can be dynamically allocated to this container for serving its 

workload. This is in contrast to traditional, non-virtualized hosting, where an application’s 

resource availability is statically defined by its physical machine’s configuration. The 

Resource Allocator periodically (e.g., every 10 seconds) adjusts the multi-type resource 

allocation to VMs based on the Resource Predictor’s estimate. The Resource Allocator also 

needs to deal with situations where the resource prediction is inaccurate and causes the 

application performance to diverge from the QoS target. This happens when the application 
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workload is first started or when its resource usage behavior changes so the Adaptive 

Learner cannot properly model the VM’s current behavior. 

In our approach, a backup resource allocation policy is employed to quickly recover from 

performance loss resulted from QoS violations when the VM’s resource need is 

underestimated due to inaccurate workload modeling. This backup policy is invoked based 

on the recent information on the application’s performance measurement P(t), for instance, 

after the QoS target is missed for several (e.g., two) consecutive periods of time. This 

backup policy increases the current resource allocation by a fixed percentage (e.g., 100%) 

in order to satisfy the VM’s unknown resource need which is beyond its previous resource 

allocation level. (The choice of how soon to invoke the backup policy when a QoS violation 

happens is studied in section 3.4.4.) This fixed increment of resource allocation is 

accumulated until the QoS comes back to the target value, and afterwards the resource 

allocation is sustained at that level until the target is met for several (e.g., two) consecutive 

periods of time. Because the VM resource usage can be controlled at a fine granularity (in 

the matter of seconds), this mechanism allows the performance loss to be quickly recovered. 

Meanwhile, it also allows qualified data points to become quickly available so that the 

model can be timely updated to correctly reflect the VM’s current resource needs.  

However, the backup policy is only a supplemental method to our proposed fuzzy-

modeling-based resource allocation. Although in the form of a traditional event-condition-

action rule, it cannot substitute for the fuzzy model. The event-condition-action rules have 

to be predefined based on experts’ knowledge, while the fuzzy model is automatically 

learned from the controlled system. Further, the event-condition-action rules are often 

statically defined, while the fuzzy model can be updated online to adapt to the changes in 
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the system. Hence, the backup policy is only triggered when the model is inaccurate and 

unable to get qualified data to update itself. With the assumption that a workload’s stable 

phases are much longer than its transition phases, the fuzzy model should be able to 

correctly predict the resource needs for most of the time therefore the backup policy would 

only be used infrequently.  

3.4. Evaluation 

This section evaluates our proposed approach on a virtualized database system which is 

considered as challenging and interesting case study for applying the fuzzy-logic based 

modeling due to its dynamic and complex behaviors [22]. Although our previous work 

successfully applied fuzzy modeling to control CPU allocation for VMs hosting CPU-

intensive applications [23], the evaluation of the management of database VMs answers the 

following unique, important research questions: 1) How to effectively manage a VM with 

correlated, multi-type resource need, including not only CPU cycles but also I/O bandwidth? 

2) How to timely adapt to the dynamic changes in a VM’s resource need in terms of not 

only varying intensity but also shifting demand across different resource types?  

3.4.1.  Setup 

The testbed is a quad-core Intel Q6600 2.4GHz physical machine with 4GB RAM and 

142GB SATA disk. Xen 3.3.1 is installed to provide the VMs, where the operating system 

for both Dom0 and DomU VMs is Ubuntu Linux 8.10 with paravirtualized kernel 2.6.18.8. 

The evaluated databases are hosted on DomUs, while our resource management system is 

hosted on Dom0. In all the experiments, the management system monitors and controls the 

database VM’s usage of both CPU cycles and disk I/O bandwidth every 10 seconds. In the 
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VM Sensor, resource monitoring is done using xentop and iostat, where the I/O bandwidth 

usage is considered as the sum of reads and writes per period of time. In the Application 

Sensor, a database proxy deployed on Dom0 is used to measure the performance of the 

database VM. The Resource Allocator uses Xen’s sEDF CPU scheduler to assign CPU 

allocations and Linux’s dm-ioband I/O controller to set the cap for disk I/O bandwidth [42]. 

The sEDF scheduler uses 100ms period in the work-conserving mode. Another DomU VM 

running a CPU-intensive program is pinned on the same core assigned to the database VM 

to consume the surplus CPU cycles. Other VMs involved in our experiments are served as 

clients running outside of our testbed. 

Two typical database benchmarks, TPC-H [39] and RUBiS [40], are used in our 

experiments. The performance metrics considered in TPC-H include both average query 

throughput and average query response time measured every 10s. But in RUBiS only 

response time is considered because it is strongly correlated with throughput for this 

benchmark. Two different resource allocation schemes are compared: 1) The peak-load-

based resource allocation, where the database VM is statically allocated sufficient resources 

based on its peak-load demand; 2) The fuzzy-modeling-based resource allocation, where 

the VM’s resources are dynamically allocated based on our proposed approach. By 

comparing the VM’s resource usage and the benchmark’s performance between these two 

cases, we evaluate whether our proposed approach can achieve the same level of QoS while 

saving resources compared to peak-load based static resource allocation.  
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3.4.2.  TPC-H Experiments 

TPC-H provides 22 representative queries of business decision support systems, which 

involve the processing of large volumes of data with a high degree of complexity. Based on 

these queries, we construct synthetic workloads with varying demands of different types of 

resources. With peak-load based allocation, 100% CPU and 12MB/s or 10 MB/s I/O are 

allocated to the database VM statically. With fuzzy-modeling-based allocation, there are 

two phases involved. In the training phase, the fuzzy model is learned without resource 

restrictions, while in the testing phase the model is applied to predict the resource demand 

and control the resource allocation. The evaluation of more realistic workloads with online 

training is discussed in Section 3.4.3. The database used here is PostgresSQL 8.1.3 with 2 

GB of data, hosted on a VM with one CPU and 1GB RAM. 

We characterize a TPC-H workload by classifying its 22 standard queries into four 

clusters. Each cluster identifies one type of query with similar resource usage pattern. 

Cluster I containing single query Q1 and Cluster II containing single query Q18 represent 

highly and moderately CPU-intensive query, respectively. Cluster III including Q4, Q6, 

Q15 and Q12 represents highly I/O-intensive queries. Cluster IV including most of the 

remaining queries represents simple queries which are neither CPU nor I/O intensive. This 

workload characterization can be performed based on the cost estimation extracted from 

PostgresSQL using a cross-layer optimization approach which will be illustrated in the 

following chapter. The resulting clusters are experimentally verified by the actual resource 

usages when running the queries separately on the database VM.   
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a) CPU-intensive Workload  

The first experiment evaluates our approach for a CPU-intensive workload consisting of 

the two queries, Q1 and Q18, from Cluster I and II. While keeping the ratio of these two 

clusters constant (3:2), the workload’s total request rate is varied between 25 to 65 requests 

per minute. A set of evenly distributed request rate values (225 data points) within this range 

are used to train the model which produces a 3-rule base. The workload is then run with a 

different set of request rate values (150 data points) to test the model, for each value, the 

workload is kept running for 300s. In the fuzzy-modeling-based approach, the resource 

allocation is done periodically every 10 seconds.  

The CPU allocation and workload performance from using the fuzzy-modeling-based 

resource allocation and the peak-load-based resource allocation are compared in Figure 3-5, 

Figure 3-6 and Figure 3-7. Note that both the workload performance and resource allocation 

shown from fuzzy-modeling-based approach are average values calculated from the 

measurements for each specific request rate. The performance obtained in the fuzzy-

modeling-based allocation is always at the same level as the peak-load-based allocation 

even when the system becomes saturated after the request rate exceeds 55 query/minute. 

This demonstrates that our proposed fuzzy model is able to capture complex system 

behaviors over large region of the operating space. The throughput is within 96.4% to 100% 

of the peak-load-based allocation, while the average response times only increase by at most 

two seconds. (The throughput is expressed in terms of number of completed queries every 

10s, because these queries are complex and time-consuming.) At the same time, substantial 

amount of CPU allocation is saved when the workload is below the peak load. Note that, 
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because of the difference in CPU intensity between Cluster I and II queries, the VM’s CPU 

need changes as the ratio of these two clusters varies. Our 
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approach can also properly model this behavior and accurately predict the VM’s CPU 

need by taking this ratio as another input to the modeling. These results are omitted due to 

the limited space.  

 
Figure 3-5 CPU allocation for the CPU-

intensive TPC-H workload 
	

Figure 3-6 Response time for the CPU-
intensive TPC-H workload 

 

 
Figure 3-7 Throughput for the CPU-intensive 

TPC-H workload 
	

Figure 3-8 I/O bandwidth allocation for the 
I/O-intensive TPC-H workload 

 

 
Figure 3-9 Response time for the I/O-

intensive TPC-H workload 
	

Figure 3-10 Throughput for the I/O-
intensive TPC-H workload 
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b)  I/O-intensive Workload 

In the second experiment, we consider an I/O-intensive workload using queries, Q6, Q15, 

Q12 and Q4, from Cluster III, which access a 200MB database table. We intentionally 

modified the original queries to only touch on a small region of the table so that we can vary 

the total request rate in a larger range. Further, the contiguous queries in the workload are 

set to access different regions so that the workload is always I/O intensive. Note that the 

purpose of this setup is only to make the experiment more interesting and it is only used in 

this experiment. The workload is created with a sequence of queries randomly picked from 

Cluster III. The total request rate of the workload varies from 20 to 140 requests per minute, 

where the training set (250 points) and the test set (200 points) are created similarly to the 

previous experiment. The resulting fuzzy model contains 4 rules. 

Figure 3-8, Figure 3-9 and Figure 3-10 compare the I/O bandwidth allocation, query 

response time, and query throughput between using fuzzy-modeling-based and peak-load-

based resource allocation. (The response times for the request rate of 135, not shown in the 

figure due to the large magnitude, are 50.6s and 52.9s for peak-load-based and fuzzy-

modeling-based allocations respectively. The CPU allocations are also omitted because this 

experiment is not CPU-intensive.) The results also demonstrate that our approach can 

accurately model the database VM’s I/O bandwidth need for such an I/O intensive 

workload. The throughput is within 89.5% to 100% of the as the peak-load-based allocation, 

but up to 30% increase in response time is observed. We believe that this overhead is due 

to the non-work-conserving nature of the dm-ioband I/O bandwidth controller, which 

increases the queuing delay of the queries, affecting only the query response time but not 

the throughput. We will investigate how to improve dm-ioband for query response time in 
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our future work. Nonetheless, substantial amount of I/O bandwidth is still saved using the 

fuzzy-modeling-based approach when the workload is below the peak load. 

 
Figure 3-11 CPU model for the CPU/IO-

intensive TPC-H workload	

 
Figure 3-12 I/O model for the CPU/IO-

intensive TPC-H workload 

Figure 3-13 CPU allocation for the CPU/IO-
intensive TPC-H workload 

Figure 3-14 I/O allocation for the CPU/IO-
intensive TPC-H workload 

Figure 3-15 Response time for the CPU/IO-
intensive TPC-H workload 

Figure 3-16 Throughput for the CPU/IO-
intensive TPC-H workload 
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c)  CPU/IO-intensive Workload 

In the third experiment, we consider a workload that is both CPU and I/O intensive, by 

mixing queries from Cluster I (Q1), Cluster II (Q18), and Cluster III (Q6 and Q15). For 

simplicity, the ratio of the queries from Cluster I and II is fixed to 1:1 in the workload, but 

the total ratio of Cluster I+II over the entire workload composition is varied from 0.3 to 0.9. 

In addition, the total request rate of the workload also varies from 20 to 80 requests per 

minute. Different sets of data points are evenly taken from these data ranges for training 

(450 data points) and testing (150 data points).  

This experiment is designed to evaluate our approach’s ability to model a both CPU- and 

I/O-intensive workload with both changing intensity and changing composition. The 

model’s input, the workload is characterized by both the total request rate and the ratio of 

Cluster I+II and Cluster III queries. The resulting model is illustrated by two 3-D sub-

models each consisting of 12 fuzzy rules. The results show that our approach can properly 

capture such complex behaviors of the database VM. From Figure 3-13 to Figure 3-16 show 

the resource allocation and workload performance when the request rate is fixed at 75 

requests per minute but the Cluster I+II/Cluster III ratio varies. Compared to using peak-

load-based resource allocation, the performance degradation from using fuzzy-modeling-

based allocation is less than 5s in average response time and less than 10% in throughput, 

while saving both CPU and I/O bandwidth allocations. (The results from other request rates 

are similar and omitted here.) These results show that the VM’s fuzzy model can accurately 

predict both its CPU and I/O need and the resource management system can effectively 

control them simultaneously, delivering good QoS to such a both CPU- and I/O-intensive 

workload. 
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3.4.3. RUBiS Experiments 

RUBiS models an online auction site that supports the core functionalities such as 

browsing, selling, and bidding [40]. A typical two-tier setup is used to set up RUBiS, where 

the Web tier and database tier are deployed on separated VMs. The Web-tier VM hosts 

Apache Tomcat 4.1.40 with RUBiS and its clients while the database-tier VM hosts MySQL 

5.0 with 1.1 GB of data. Both VMs are configured with one CPU and 1GB RAM. Since 

these experiments are performed completely online, only the first 10 data points collected 

are used to initialize the model. Afterwards the model is used to allocate resources right 

away and in the meantime it is updated with new observed data every 10s. By interposing a 

MySQL proxy before the database tier, our system characterizes its query workload online 

in terms of intensity and composition. The composition can be captured by the ratio of two 

types of queries, the SELECT queries, which are read-only, and the INSERT and UPDATE 

queries, which are writes to the database.  

a)  Simulation of Real-world Workload 

Compared to the synthetic workloads used in the above TPC-H experiments, here we 

constructed two more realistic workloads, one with changing intensity and the other with 

changing composition, based on real traces from the 1998 World Cup site [43]. This method 

is similar to those used by the related work for creating realistic workloads [44][45]. 

The first workload with changing intensity is a browsing-only mix (Figure 3-17) derived 

from a typical one-day hourly trace from the World Cup site. We first vertically scale the 

range of request rate to what our RUBiS setup can handle, i.e., mapping [50000, 100000] 

request/hour in the World Cup trace to [0, 1000] request/second in the RUBiS workload. 
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Second, we horizontally scale the duration of workload from 24 hours to 2880 seconds, to 

speed up the replay of the trace. Since the workload intensity in RUBiS is controlled by the 

number of concurrent client sessions to the web tier, another mapping is created from the 

desired request rates to the number of client sessions.  

The second workload is constructed in a similar way but we place emphasis on the 

variation in workload composition while keeping its intensity constant (the number of 

 
Figure 3-17 Trace for RUBiS with changing intensity 

 

 

Figure 3-18 CPU allocation for changing intensity workload 
 

 
Figure 3-19 Performance for changing intensity workload 

 
 

0

100

200

300

400

500

600

700

0 240 480 720 960 1200 1440 1680 1920 2160 2400 2640

C
li
e
n
t 
Se
ss
io
n
s

Time (s)

0

20

40

60

80

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

C
P
U
 A
llo

ca
ti
o
n
 (
%
)

Time (s)

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

R
es
po

ns
e 
Ti
m
e 
(m

s)

Time (s)

QoS Target(5ms)

QoS Target(2ms)



43 
 

concurrent client sessions to the web tier is fixed at 800). Another one-day hourly trace with 

a stable request rate is chosen to derive this workload. We identify the read and write 

requests in the World Cup trace based on the “Get” and “Post” method, respectively, used 

in each request. The ratio of the read and write requests in this trace is then mapped to the 

ratio of the browsing and bidding requests in the RUBiS workload (Figure 3-17), which 

corresponds to the SELECT to INSERT/UPDATE ratio to its database workload. 

 The desired QoS target for these workloads is defined according to the performance of 

the database VM under the peak-load-based resource allocation which statically assigns 

70% CPU and 320KB/s disk I/O bandwidth. For the changing intensity workload, the QoS 

target is 2ms when the web tier is not saturated and 5ms otherwise. For the changing 

composition workload, the QoS target is set to 70ms. 

b) Results 

Figure 3-18 and Figure 3-19 show the CPU allocation and query performance of the 

database VM for the changing intensity workload (the I/O allocation result is omitted 

because this workload is not I/O intensive). As soon as the model is initialized through the 

first ten data points, it is able to accurately predict the VM’s resource need throughout most 

of the experiment even when the burst occurs at time 480s, 1450s, and 1930s without using 

the backup resource allocation policy. At time 2100s, the system is under its peak load, 

current model underestimates the CPU need and the backup resource allocation policy is 

triggered to ensure the availability of qualified data for model adaption. After two control 

periods (20s), the model is adapted to the new system behavior and able to correctly predict 

the new resource need while the backup policy is stopped. The shaded area in Figure 3-18 

illustrates the amount of resource saved (62.6%) in fuzzy-modeling-based resource 
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allocation. Figure 3-19 shows that the average query response time can meet the desired 

QoS target most of the time (Only 11 QoS violation periods occurred throughout the entire 

experiment).  

Figure 3-21 and Figure 3-22 show the I/O allocation and query performance of the 

database VM when running the changing composition workload (the CPU allocation results 

Figure 3-20 Trace for RUBiS with changing composition 
 

Figure 3-21 I/O allocation for changing composition workload 
 

Figure 3-22 Performance for changing composition workload 
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is omitted due to limited space). It is evident that the fuzzy-modeling-based resource 

allocation can quickly react to the changes in workload composition and deliver the desired 

QoS most of the time. The spikes occurred at 360s and 1400s are caused by rapid shifts in 

the ratio of the workload’s biding and browsing requests. The backup policy was invoked 

only at these two times to quickly adapt the model and meet the QoS target again. We 

believe that by improving the dm-ioband I/O bandwidth controller with work-conserving 

scheduling can further reduce the spikes in response time during such abrupt transitions.  

3.4.4. Modeling Sensitivity and Overhead 

A key parameter used in the backup policy is the threshold for deciding when to invoke 

and stop the backup policy. In the above RUBiS experiments, this threshold is set to two, 

which means that the backup policy is triggered when the QoS target is missed for two 

consecutive control periods and then canceled after the QoS target is met again for two 

consecutive periods. When the backup policy is effective, it quickly increases the VM’s 

resource allocation by doubling it every time the required QoS is violated. When it is 

stopped, the predicted resource need from the updated model is again used to decide the 

VM’s resource allocation. 

In the last experiment, we study the sensitivity to this threshold of our proposed approach 

study using a workload with changing composition created by switching between four 

mixes, each producing a constant percentage of write queries, 0%, 4%, 8%, and 20% 

respectively, to the database tier. Each mix lasts 300 seconds and then transits immediately 

to the next mix. The number of concurrent client sessions is kept at 200. We run this 

workload on RUBiS and use the fuzzy-modeling-based resource allocation with different 
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threshold values. The result shows that the same level of average throughput (21 query/s) 

can be achieved when the threshold value varies from 1, 2, to 4, but the total number of uses 

of the backup policy drops from 12, 2, to 1, respectively (the figures are omitted due to 

limited space). It confirms that if the threshold is set lower, the backup policy is invoked 

more often while it is set higher, longer QoS violations are experienced during the 

transitions. The result verifies that the threshold value of two is a good choice but in general 

this tradeoff can be determined by considering both the QoS requirement and resource cost. 

We also measured the overhead of our approach for modeling and controlling the 

database VM’s resource usage in the RUBiS experiment. The resource consumed by the 

management system is small, which is less than 20MB of memory and 1% of CPU when 

measured every second. The time required for modeling is also small, although it slightly 

increases as the size of the training data grows. With 1000 data points, it takes about 0.4s. 

In practice, when a sliding window is used to ensure the freshness of training data, this 

overhead will remain negligible. The time required for fuzzy inference is even smaller and 

independent of the dataset size.  

3.5. Summary 

Virtualization can greatly facilitate the deployment of applications and substantially 

improve the resource utilization of the hosting system. To fulfill this potential, resource 

management is the key, which should be able to automatically allocate resources to VMs 

based on their QoS targets. This chapter presents an autonomic resource management 

system that can achieve this goal through a fuzzy modeling based approach, which models 

a VM’s resource usage behaviors based on observed data and predicts its resource needs for 
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its current workload demand. This process is done periodically (in terms of seconds) online 

to guide dynamic resource allocation and adapt to changes in the system. Experiments based 

on typical database benchmarks show that our system can accurately estimate a database 

VM’s resource needs for dynamic and complex query workloads, meet the desired query 

QoS, and save substantial resources compared to peak-load based static allocation.  
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4. FUZZY MODEL PREDICTIVE CONTROL BASED RESOURCE 
MANAGEMENT 

In the previous chapter, our fuzzy-modeling-based approach relies on a predefined 

backup policy to deal with situations where the VM’s resource demand is misestimated due 

to dynamic changes in the VM’s resource usage behaviors. However, empirical knowledge 

is needed to decide factors such as how many consecutive QoS violations should be 

observed before invoking the backup policy, and how much resources needs to be added on 

the current allocation when resource is under provision. In this chapter, we study a new 

fuzzy-model-predictive-control (FMPC) approach which better addresses this limitation by 

automatically adjusting the allocations based on performance error instead of manually 

increasing fixed amount of resources. Then it is further incorporated in a two-level cloud 

resource management framework to manage VMs across multiple hosts based on system-

level objectives.  

4.1. Background  

4.1.1. Adaptive Virtual Resource Management 

Emerging virtualized systems such as utility datacenters and clouds promise to be 

important new computing platforms where applications could be executed efficiently and 

resources could be utilized efficiently. A key challenge to fulfilling this promise is to 

correctly understand an application’s VM’s resource demand based on its QoS target and 

effectively optimize the resource allocation across VMs based on resource-provider 
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objectives. The major difficulty lies in the intrinsically dynamic and complex nature in the 

resource usage behaviors in such virtualized system. 

First, the dynamics in an application’s workload can lead to complex behaviors in its 

VM’s resource usages as its intensity and composition change over time. For instance, a 

web workload’s request rate varies depending on the time of day and the occurrence of 

events [48]; a database workload can also change in terms of its composition of a wide 

variety of queries with different levels of CPU and I/O demands as illustrated in Chapter 

3. Second, interference among VMs hosted on the same physical machine can lead to 

complex nonlinear resource usage behaviors as they compete for various types of resources 

that cannot be strictly partitioned. For example, when co-hosted VMs compete for the 

shared last level cache or disk I/O bandwidth, the relationship between each VM’s resource 

allocation and its application’s performance is known to be nonlinear [17][49]. Finally, 

even if the application workloads stay relatively steady, their SLAs, which specify the QoS 

that they require and the cost that they are willing to pay, may change over time. 

Consequently, resources in the system need to be reallocated across different applications’ 

VMs in order to sustain the system-level objective. As more applications become Internet-

scale and resources become more consolidated, the above scenarios would also be 

increasingly common in a virtualized system. 

In particular, machine learning techniques can be employed to automatically learn the 

relationship between a VM’s resource allocation and its application’s performance; 

Control-theory techniques can be used to build a feedback loop into the resource 

management which can automatically adjust resource allocations and quickly reach the 
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desired system objective. This chapter proposes a new resource management approach 

based on the combination of these two types of techniques that can effectively capture the 

nonlinearly in virtualized system behaviors and quickly adapt to the changes in such 

behaviors, which are discussed in details in the following subsections. 

4.1.2. Model Predictive Control 

Model predictive control (MPC) [50] is an advanced control technique in which the 

controller takes control actions by optimizing an objective function that defines the 

objective of controlling the system. To enable the predictive capabilities of the control 

system, an explicit model that characterizes the system behaviors is leveraged to make 

predictions of system output over a specific future prediction horizon. Such modeling and 

optimization typically involved in MPC can be performed iteratively in an online fashion, 

where real-time data are used to update the model in the modeling phase and new optimal 

action is computed based on the model to adjust the system control. In this way, the system 

can adapt to the changes in the system behavior in a timely fashion. 

In contrast to an open-loop optimal control technique, the MPC system works in a 

closed-loop manner by feeding back the information on previous inputs and outputs to the 

controller at the end of each control period in order to keep track of prediction errors and 

control variations, so that on one hand the controller is able to make more informative 

control actions based on the feedbacks, while on the other hand the system is able to be 

driven back to the set-point target appropriately without large oscillations even in the 

presence of noise.  
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MPC has been used by related work on VM resource management [52][51], where most 

approaches as the traditional feedback control methods do adopt “black box” linear input-

output models which are accurate enough to model nonlinear system behaviors within a 

limited region of control operation. 

Our proposed FMPC approach combines the strengths of machine-learning and 

control-theory techniques in virtual resource management. Compared to other modeling 

based approaches, the FMPC approach can be effectively applied online and quickly adapt 

to changes in system behaviors. Typical model-based approaches require substantial data 

for training the model which is difficult to do online. Even if a model can be built offline, 

it is difficult to adapt it online when the system behavior changes. Compared to other MPC-

based approaches, the FMPC approach can well capture nonlinear system behavior without 

much learning overhead. In a typical linear-model-based MPC approach, a linear model is 

assumed to approximate the nonlinear behavior within a limited region of an operation 

point while it can be updated adaptively as the system moves from one operating point to 

another. However, as demonstrated by our experiment results, the FMPC approach can 

more accurately capture the system behavior with a nonlinear fuzzy model and it can 

perform optimized control continuously over the entire operating space.  
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4.2. Two-level Resource Management Architecture 

This chapter considers the typical cloud environment where VM hosts are organized 

into zones: Within each zone, the hosts use shared storage servers to store the VM images 

so VMs can be quickly live-migrated across the hosts for load balancing; Across zones, 

VMs cannot be easily live-migrated so it happens only at rare occasions, e.g., when an 

entire zone is overloaded or under maintenance. Hence, the proposed resource management 

framework focuses on the dynamic resource allocations at the host level and dynamic VM 

migrations at the zone level. Nonetheless, the proposed two-level framework can also be 

applied to balance loads across zones using non-live VM migrations according to the entire 

cloud system’s service-level objectives.  

Figure 4-1 illustrates the architecture of the proposed two-level cloud resource 

management framework which includes a Node Controller on every VM host and a Global 

Scheduler for the entire cloud zone. Specifically, a node controller is responsible for 

 

Figure 4-1 Two-level cloud resource management system 
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dynamically allocating resources to VMs and optimizing them using FMPC according to 

application QoS targets. The global scheduler dynamically adjusts VM placement through 

live migration in order to handle load variations on the VM hosts and to improve system-

level performance. The node controllers and global scheduler cooperate with one another 

to complete the cloud resource management. When a node controller updates its predicted 

resource demands of its local VMs, it sends this information to the global scheduler for 

making VM migration decisions; when a global scheduler decides to migrate a VM, it 

coordinates with the node controllers on the source and destination hosts to update their 

performance models and adjust the resource allocations based on the new VM placement. 

These two levels of resource management operate at different granularity and time 

intervals. The node controllers allocate resources at a fine granularity (e.g., CPU cycles) 

and time scale (e.g., every 20 seconds), because of the low overhead of making such 

adjustments through the hypervisors and the fast speed of the proposed performance 

modeling and resource optimization techniques. The global scheduler adjusts the resource 

utilization across hosts in the units of VMs at a longer time scale (e.g,. every minute) 

because of the relatively higher overhead and longer-term effect of VM migrations. 

Therefore, in this two-level architecture, fine-grained, frequent control actions occur only 

at the host level within the scope of the limited local VMs, whereas global control takes 

place at a coarse granularity and infrequently. It is thus easier to scale compared to the 

alternative one-level architecture that either employs a centralized manager to control the 

resource allocations to all the VMs across hosts, or completely decentralize the 

management so that a node controller has to communicate with all the other peers in order 

to obtain global knowledge and coordinate VM migration decisions. 
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4.3. Host-level VM resource management 

Figure 4-2 illustrates the architecture of our proposed system which consists of four 

key modules, Application Sensors, Fuzzy Model Estimator, Optimizer, and Resource 

Allocator. As the applications are running on their VMs, the Application Sensors monitor 

the performance yi(t) from each application i and then send them to Fuzzy Model Estimator. 

The estimator collects all necessary information including current and historical 

application performance and VM resource allocations to create the fuzzy model for 

performance prediction. Such a model which represents the relationship between the 

control input (resource allocations to the VMs) and the measured output (performance of 

the applications) is updated every control period. Based on the model, the Optimizer 

produces a resource allocation scheme for the next time interval that optimizes the system 

according to a predefined objective function. Then the Resource Allocator adjusts the 

VM’s resource allocations accordingly. Together, these modules form a continuous 

feedback loop for the virtual resource management.  

4.3.1. Fuzzy Model Estimator 

The proposed FMPC is a fuzzy-model-based predictive control approach [50]. The 

major difference between FMPC and traditional MPC approaches lies in the modeling part. 

In FMPC, the fuzzy model estimator is responsible for building models that can describe 

complex system behaviors using fuzzy logic based method. The strength of this approach 

includes the following aspects: 1) it simplifies the learning of the complex models by 

describing nonlinearity using a set of linear sub models captured by the fuzzy rules; 2) it 

can perform optimized control over the entire operating space; 3) it inherits the benefits of 
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traditional predictive control that can guarantee dynamic performance in a closed-loop 

system and achieve desired target in a stable manner. 

Consider a resource provider that hosts multiple applications by multiplexing multiple 

types of resources among them via VMs, a general MIMO model in MPC described by the 

following equation is used to build the time-varying relationship between resource 

allocations and application performance,  

Φ ,… , , 1 , … ,  

where the input vector u(t) = [u1(t), u2(t), …, uN(t)]T represents the allocation of p types of 

controllable resources to the q applications’ VMs at time step t (N = pq), and the output 

vector y(t) = [y1(t), y2(t), …yq(t)]T is referred to as the predicted performance of q 

applications at time step t. For example, if there are two applications whose performance 

relies on two types of resources, i.e. CPU and disk I/O, then u(t) is a 4-dimensional vector, 

[uCPU1(t), uCPU2(t), uIO1(t), uIO2(t)]T.   

In traditional MPC approaches, linear models are applied to approximate the nonlinear 

behaviors around the current operating point, while m and n reflecting the impact of the 

previous inputs and outputs to current prediction are usually set to small values in order to 

reduce the complexity of the model, e.g., with m = 0, n = 1, y(t) = Φ( u(t), y(t-1) ) = au(t) 

+ by(t-1). 

In our proposed FMPC, the general Φ function from the control inputs to the system 

outputs is instantiated by a fuzzy model composed of a collection of Takagi-Sugeno fuzzy 

rules [31]  

: 	 	 	 	 		 1 	 , 
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                                       	 1       (1) 

In the premise Ai and Bi
 are fuzzy sets associated with the fuzzy rule Ri. Their 

corresponding Gaussian membership functions  and    

determine the membership grades of the control input vectors u(t) and y(t-1), respectively, 

which indicate the degree that they belong to the fuzzy sets. In the consequence, the output 

y(t) is a linear function of the current control input and the previous output with trainable 

parameter matrices ai and bi.  

The Estimator adopts an efficient one-pass clustering algorithm, subtractive clustering, 

to build a concise rule base with a small number of fuzzy rules that can effectively represent 

the VMs’ behaviors. Each cluster exemplifies a representative characteristic of the system 

behaviors and can be used to create a fuzzy rule accordingly. In this way, both the system 

structure and parameters are learned and adapted in real time from online data streams. The 

system model gradually evolves as opposed to having a fixed structure model, and the 

learning process is incremental and automatic. Owing to the speed of subtractive clustering 

and fuzzy modeling, this whole model updating process can be completed quickly within 

a fine-grained control interval. 

The Estimator is invoked by the Optimizer discussed below in every control step t to 

predict the performance for specific input values and assist it to search for the optimal 

allocation solution across the input space. The Estimator applies fuzzy inference to predict 

the output y(t) for a given control input < u(t),  y(t-1) > based on a trained fuzzy rule base 

with S fuzzy rules. It entails the following steps: 1) Evaluation of antecedents: the input 

variables are fuzzified to the degree, , to which they belong to each of the fuzzy sets via 
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the corresponding membership functions for each fuzzy rule Ri;2) Implication to 

consequents: implication is performed on each fuzzy rule by computing yi(t) based on the 

equation in the consequent of the rule; 3) Aggregation of consequents: the final prediction 

is performed as ∑ , where the outputs yi(t) of all the fuzzy rules are 

aggregated into a single numeric value based on their corresponding membership grades 

.  

4.3.2. Optimizer 

Generally, the objective function in MPC can be formulated as 

∑ ‖ | ‖ 	∑ ‖ | ‖  (2)           

where P and M indicate the prediction and control horizon. 	  is the predictive error 

between y(t+i), the output of the next ith step predicted from the current time step t (using 

the fuzzy model produced by the Estimator), and the reference output yref(t+i) of the next 

ith step.  indicates the control effort. The importance of tracking accuracy in 

performance targeting and maintaining stability in control operation can be determined by 

tuning the Q(i) and R(i) factors for the two components of the equation. Larger Q factor 

will make the controller react aggressively to tracking errors in performance. Larger R 

factor will guarantee the stability of the system by preventing from large oscillation in the 

resulting resource allocation, but lead to slower response to the tracking error.  

To reduce the complexity of the problem, we choose an objective function with M = P 

= 1. In addition, in Equation 2, the performance of the q different applications, represented 

in y = [y1(t), y2(t), …yq(t)]T, are treated with equal importance. In practice, applications 
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concurrently hosted in a virtualized datacenter or cloud are often given different 

preferences, because they have different priorities or they generate different amounts of 

revenue to the system. Without loss of generality, we use a weight vector w = [w1(t), w2(t), 

…wq(t)]T to represent the preferences given to the applications. The following objective 

function formulated as a constrained minimization problem considers not only tracking 

QoS targets for individual applications but also optimizing resource allocations for 

maximizing the system-level benefit especially when resources are contested.  

∙ 1 	 1	 	

1 | 1 |  

(3) 

The goal of the Optimizer is to find a resource allocation 1 ∗ that can minimize 

the above objective function, i.e., 1 ∗ 1 , subject to the total 

resource capacity (e.g,. total available CPU time, total available memory capacity) of the 

host. By taking the resource allocation that minimizes the objective function at each time 

step, FMPC will be able to optimize the resource allocations to meet the applications’ QoS 

targets, when it is not oversubscribed, or minimize the distance to the targets, when 

oversubscribed. 

The fuzzy performance model in FMPC is rule-based and not differentiable; a 

minimization problem involving such models cannot be solved by any classical, derivative-

based optimization algorithm. A genetic algorithm (GA) method is applied to solve this 

complex optimization problem [47]. This algorithm is well-known for tackling more general 
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optimization problems in which the objective function is non-differentiable, discontinuous 

or highly non-linear, that are not well suited for standard optimization algorithm, e.g., 

quadratic or linear programming. In light of the natural selection process in biological 

evolution, the GA algorithm encodes a solution in the optimization search space as a gene 

in biological reproduction. By mimicking the gene combinations in biological reproduction, 

it iteratively operates on a population of candidate solutions as a parent generation to 

produce its children generation by selecting the good parent candidates and performing 

randomly genetic operations (mutation and crossover) on them to produce the children for 

the next generation. The goodness of each candidate solution is computed by a predefined 

fitness function which is usually related to the objective function in optimization. Finally, 

the population “evolves” toward a globally optimal solution over successive generations. 

To implement a GA solver in the Optimizer, the control input u is specified as the 

variable vector in the optimization as well as its bounded searching space. The solver 

considers a fitness function based on the objective function defined in Equation 3, a model 

function based on the fuzzy model learned by the Estimator, and a constraint function based 

on the resource capacity bound. It then follows the genetic algorithm to search for the 

optimal resource allocation 1 ∗. To ensure the speed of the solver, a bound is set on 

the generations that the algorithm can produce, so that the optimization can finish within a 

small control interval. Although the solver may return only a near-optimal solution, given 

the time constraint, as FMPC operates iteratively, it can still steer the system to approach 

the optimal state.  

As described above, the Estimator and Optimizer work together in an online closed-loop. 

The input-output data pair <u(t), y(t)> is measured and collected in every control period to 
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train the fuzzy model. A MIMO fuzzy model can handle a coupled system with multi-input 

and multi-output to describe complex system behavior with implicitly contentions from 

system components. Once the model is established, it serves as a prediction tool for the 

controller to search for the optimal u(t+1) that promises the best y(t+1) which will be applied 

to the VM resource allocation in the next control period. As shown in the evaluation section, 

this control loop can be applied at fine time granularity (e.g., 20s) to meet QoS targets. It is 

capable of quickly recovering from model inaccuracy (during bootstrapping or dynamic 

changes in the system), as the observed performance for a given allocation is immediately 

used to update the model and reflect the current behaviors. 

  

Figure 4-2 The architecture of the FMPC local controller system 
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4.4. Cross-Host Cloud Resource Management 

Within a host’s resource constraints, the FMPC approach allows the node controller to 

effectively optimize the host-level performance objective by allocating the resources to its 

local VMs. However, local optimality achieved at individual host level does not guarantee 

the global optimality in the entire zone because resource utilization may be unbalanced 

across the hosts. The global scheduler in the proposed two-level cloud resource management 

architecture addresses this issue and optimizes the zone-level resource utilizations by live-

migrating VMs across the hosts. There is a good amount of related work on the use of VM 

migration to optimize for a variety of performance, energy, and thermal objectives (e.g., 

[64][65]). The global scheduler in the proposed two-level cloud resource management 

architecture focuses on the use of VM migration for cross-host load balancing and its 

integration with the FMPC-based node controllers.  

To formulate the problem of VM consolidation, consider M VMs distributed among N 

nodes in a cloud zone with an initial placement , , … , 	 	 1 , 

where ∑ M. Then the necessary condition of VM migration is defined as when the 

total demands of a certain type of resource (e.g., CPU, memory, IO bandwidth), Resij from 

all the VMij on Host i exceeds its capacity Ci, i.e., ∑ . 

The global scheduler detects these conditions on its managed hosts based on the VM 

resource demands estimated by the FMPC controllers of their node managers. It then uses 

the information to carefully make migration decisions for the entire system. The global 

scheduler continuously updates two lists based on the resource demands periodically 

collected from the node controllers: OutList, the list of overloaded nodes which satisfy the 

migration condition and need to move out some of its hosted VMs; InList, the list of 
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underutilized nodes with certain amount of residual resources and can be considered as the 

destination for other VMs to move in. The OutList and InList are both sorted based on the 

host-level total resource demands. At every migration interval, the global scheduler 

identifies the VMs that need to be migrated by iterating the VMs hosted on the nodes in 

OutList, starting from the node with the highest total resource demands. For a VM 

considered for migration, it chooses a destination node with the least amount of residual 

resources in InList. The new migration descriptor <VM, source_host, dest_host > is then be 

added to a MigrationList. The OutList and InList will be updated to remove nodes that are 

not overloaded and underutilized, respectively, anymore after the migration. The global 

scheduler iterates all nodes in the OutList  until there is either no moveable VM or no 

available  destination. It then sends the migration descriptors in the MigrationList to the 

node controllers of the involved source and destination hosts to start the migrations. 

When a VM is migrated, it needs to be removed from the source host’s fuzzy MIMO 

performance model and added to the destination host’s MIMO model. If the migrating VM’s 

performance model has to be retrained from scratch, it would have a considerable 

adversarial impact on its performance as well as the performance of the other co-hosted 

VMs. To minimize this impact, the node controllers on the source and destination hosts 

work together and transfer the migrating VM’s performance model from the source host 

and use it to bootstrap its model on the destination host. To facilitate this model transfer, the 

MIMO model is decomposed into a set of single-input-single-output (SISO) fuzzy models, 

so that the migrating VM’s model can be extracted and transferred. Note that there will be 

inaccuracy when predicting the VM’s performance using the transferred model because the 

other co-hosted VMs, which also affect the migrating VM’s performance, change after the 
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migration. But this inaccuracy will be corrected by the Fuzzy Model Estimator which 

continuously updates the model online. 

  

 

RunScheduler ( ) { 
Initialize ( ); 
for (;;) { 

Update(D); Update(Avail); 
Update(Outlist); 
Update(Inlist); 
for each node i in Outlist { 

for each  { 
 if (∃ ∈ Inlist  | Availk ≥ Resij){ 

Migrationlist  ← {< VMij , i, k>};
Availi  += Resij; Availk  -= Resij; 
if (Availk ≤ Threshold){ 
 Inlist -= {k}; 
} 
if (Availi ≥ 0){ 
 Outlist  -= {i}; 
 break; 
} 

} 
} 

} 
DoMigration(Migrationlist); 
Wait till next migration interval;  

}  
} 
 

 
Initialize ( ){     
    for each node i { 
        Availi  = Ci - ∑  

        if (Availi ≥ Threshold) 
            Inlist ← {i} 
        else if (Availi ≤ 0 ) 
            Outlist ← {i} 
    } 
    Sort(Inlist); 

Sort(Outlist); 
} 
 

Pseudo code for the migration scheduling 
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4.5. Evaluation 

4.5.1. Setup  

This section evaluates the proposed FMPC-based two-level cloud resource 

management using representative benchmarks in a typical virtualized environment. The 

testbed is a cluster of Dell PowerEdge 2970 servers, each equipped with two six-core 

2.4GHz AMD Opteron CPUs, 32GB of RAM, and 1TB SAS storage. Xen 3.3.1 is installed 

to provide the VMs, and the guest operating system is Ubuntu Linux 8.10 with 

paravirtualized kernel 2.6.18.8.  

To evaluate the FMPC approach’s accuracy and adaptability for modeling the complex 

behaviors of such a multi-tiered application as a black box, the web and database tiers of a 

RUBiS instance are deployed on the same DomU VM using Apache Tomcat 4.1.40 and 

MySQL 5.0. The resource allocation to a RUBiS VM is dynamically controlled by the 

FMPC-based node controller. The client VMs, which generate workloads to the RUBiS 

VMs, are hosted on separate physical machines and they can launch up to 8000 emulated 

client sessions in total. To create high CPU contentions, another benchmark, 

FreeBench[55], which models computationally intensive jobs, was also used in the 

experiments. 

Because these benchmarks cannot saturate the storage bandwidth, the evaluation 

focuses on the management of CPU resources. Nonetheless, the previous work studied the 

use of fuzzy modeling to estimate the demands of both CPU and IO resources and showed 

its significant advantage in accuracy over a linear modeling approach [60]. 
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The control period of the node controllers is 20 seconds, during which a controller 

updates its local VMs performance model and optimizes the resource allocations to the 

VMs. The control period of the global scheduler is one minute, during which it gathers the 

resource demands from all the node controllers, decides the VM migrations, and 

coordinates the involved node controllers to execute the migrations. 

The rest of this section presents the evaluation results. It first evaluates the FMPC 

approach’s ability to correctly estimate an application resource demands and consistently 

meet its QoS target while servicing a dynamic workload. It then evaluates the node 

controller’s ability to optimize the resource allocations to multiple VMs at the host level. 

Finally, it evaluates the global scheduler’s ability to improve system-level performance by 

coordinating with the node controllers and dynamically migrating VMs across hosts. 

4.5.2. Application-Level Target Tracking 

The first group of experiment evaluates the ability of the FMPC-based controller in 

tracking fine-grained QoS target for a multi-tiered application (RUBiS) that services a 

dynamic workload.  

The experiment compares the proposed FMPC approach to the adaptive linear MPC 

(LMPC) approach studied in the related work[12]. In the FMPC approach, the predicted 

performance is assumed to be dependent on only the current resource allocation, so 

Equation (1) is simplified as : 	 	 	 , . In Equation (3), 

both the input and output vectors u and y are normalized by their maximum values that the 

system can achieve; and the Q and R factor are both set to 1 to balance the importance 

between tracking accuracy and controlling stability.  The baseline LMPC leverages a linear 
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auto-regressive-moving-average (ARMA) model which automatically trains the linear VM 

performance model using the recursive least squares method [57] and is able to adapt the 

model based on the online training. For both approaches, once the workload is launched, 

the controller starts with an initial resource allocation that is much less than the actual 

demand. The model is created from scratch with the first few data points and afterwards it 

is updated every control interval. 

 
Figure 4-3 Performance for bursty RUBiS workload 

 
 

 
Figure 4-4 CPU allocation for bursty RUBiS workload 
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a) Bursty Workload with Throughput-Based Target 

First, we evaluate the robustness of our FMPC controller under a bursty RUBiS 

workload with abrupt fluctuations in the workload intensity within short period, i.e., the 

number of concurrent client sessions changes from 2400 to 3200 then to 4000. Each phase 

is kept for 15 control intervals (300s) before an immediate transition (within one control 

period) to the next one. The corresponding throughput targets for each phase are set to 400, 

500 and 600 requests/s respectively. The fuzzy model adapts as those large stepped changes 

in workload: during the first phase, only 1 fuzzy rule is established in the rule base; by the 

end of the experiment, 2 rules are trained.   

Figure 4-3 shows the performance (throughput in requests per second) of RUBiS 

measured every control interval, from using our proposed FMPC approach to manage the 

VM resources versus using the LMPC approach. As we can see both approaches are able 

to track the changes in the workload at periods 15 and 30 and meet the specified QoS 

targets pretty closely. However, FMPC outperforms LMPC in several important aspects. 

First, the FMPC based approach is more accurate in meeting the specified QoS target. The 

average steady state error throughout all three phases is 2.3% for FMPC and 2.9% for 

LMPC; particularly in the third phase, the steady state error is 1.7% for FMPC 3.3% for 

LMPC.  

Second, the performance controlled by FMPC adapts faster than LMPC when a step 

change occurs in the workload intensity. The average settling time to within 5% of the 

steady state for all three phases is 3 control intervals in FMPC and 5 intervals in LMPC, 

where in each phase FMPC is 1 to 2 intervals faster than LMPC in settling time. This 
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advantage is because that FMPC’s fuzzy modeling is more accurate than LMPC’s linear 

modeling when transition happens. Owing to the flexibility of FMPC, it tunes its model 

more adaptively than LMPC does. For example, instead of being restricted by a fixed linear 

shape mode of LMPC, FMPC can immediately add a new rule as soon as new data comes 

which cannot be fit into current model. As a result, LMPC suffers from more than 20% 

tracking error (1-y/yref) when the first transition occurs, whereas in FMPC there is almost 

no tracking error. Overall, the average of the performance across all three phases using 

FMPC is about 5% higher than using LMPC approach.  

To better analyze the results, Figure 4-4 shows the corresponding CPU allocations. 

With an initial CPU allocation of 50% the FMPC controller is able to detect resource under-

provision as soon as the first target miss is observed and converge to an optimal allocation 

for meeting the target within a few control intervals. In comparison, the LMPC acts at least 

one interval slower than FMPC in the first phase and two intervals slower in the second 

phase. In the third phase, the LMPC approach also allocates 14% more CPU than the FMPC 

approach. Such over provisioning could lead to loss of performance for other co-hosted 

VMs and loss of revenue for the entire virtualized system. 

b) Realistic Workload with Response-Time-Based Target 

In the second experiment, we evaluate the capability of the FMPC controller in tracking 

the response-time-based QoS target which is more sensitive to the accuracy in resource 

allocation. 90th-percentile response time is used as the performance metric since it is more 

reliable to reflect the Internet service quality [63]. However, it is also more challenging for 

solving a control problem due to its highly non-linear relation in the performance modeling. 
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To make the RUBiS workload more realistic, the number of concurrent client session 

is varied in a more random way by following a real daily trace collected from the 

production web server of CS department in FIU [56]. We collect the number of requests 

per hour in a daily trace and vertically scale the range of the request rate to the range that 

our RUBiS setup can handle (Figure 4-5). To speed up the replay of the trace, we keep it 

running for 200s to simulate one-hour duration in the real trace so that the duration of the 

workload is scaled from 24 hours to 2880 seconds. The experiment starts with an initial 

model pre-trained for the workload with 200 client sessions. As the workload varies, the 

model is adapted online every control period. The QoS target for this RUBiS workload is 

set to 20ms 90th-percentile response time, which can be achieved under sufficient resource 

allocation. 

Figure 4-6 and Figure 4-7 show the performance measurement and CPU allocations 

every control interval, from using our proposed FMPC approach to manage the VM 

resources versus using the LMPC approach. As we can see although both approaches are 

able to track the performance target eventually as workload changes, FMPC is able to meet 

the QoS target more closely and more responsive to the changes especially when the system 

is heavily loaded (from time 1600s to 1800s); while the LMPC suffers more fluctuations 

in performance than FMPC does during the same time period. This is mainly because 

FMPC can capture more accurately than LMPC the highly nonlinearity in a heavy-loaded 

system with respect to the percentile-based performance metric.  The better accuracy in 

learning non-linear percentile-based performance model and its fast online learning 

algorithm allows FMPC to adapt more quickly under the highly dynamic workload and 

converge to steady state with less fluctuations in system. 
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In summary, the proposed FMPC controller can automatically track the reference QoS 

for an application by allocating the proper amount of resources to its VM. It also 

outperforms LMPC in terms of the adaptively and accuracy.  

 

Figure 4-5 A real trace replayed in RUBiS browsing mix  

 

 

Figure 4-6 Performance for realistic RUBiS browsing mix 

 

 

Figure 4-7 CPU allocations for realistic RUBiS browsing mix 
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4.5.3. Host-Level Resource Management  

The second group of experiments evaluates how the proposed FMPC controller 

manages the resource allocations among multiple VMs on the same host in order to 

optimize host-level management objective and how it reacts to the dynamic changes in 

management policy 

a) Fixed Workloads with Changing Weights  

In the first experiment, we evaluate whether the proposed FMPC approach can always 

achieve optimal total revenue where application SLAs change over time and how quickly 

it adapts to such dynamic changes by hosting two RUBiS VMs on the same pair of physical 

cores and varying their priorities during the execution.  

To make it more interesting, we create scenario where interference exists between the 

two VMs. By experimenting with the RUBiS workload, we notice that having 2400 

concurrent users for one VM-hosted RUBiS application would create a total CPU demand 

of 100% on the single dual-virtual-CPU VM which hosts both the web and database tiers 

of RUBiS. However, if we run two independent RUBiS VMs concurrently and host both 

VMs on the same pair of physical cores (using CPU affinity), then neither VM can achieve 

the same level performance when serving the same workload even though each of them 

can still get 100% of CPU. This observation confirms the existence of performance 

interference across VMs which commonly exists on a highly consolidated virtualized 

system. 

To capture the behaviors for the entire system, including the individual VM 

performances as well as the coupling relation among them, we use a two-input-two-output 
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FMPC to control the resource allocations to the two VMs. The input variables are the CPU 

allocations to the two VMs and the outputs are the measured performance of the two 

RUBiS applications. As discussed in Section 4.3.2, we assign different weights w1 and w2, 

to the two VMs (w1 + w2 = 1), which represent the different priorities or impacts to revenue 

as determined by the application SLAs. So the objective function is: 

           22
222

2
111)( tuyytwyytwtJ refref   

where ,  denotes the CPU caps set to the two VMs. Since they share the same 

two physical cores, the total available CPU is 200%. The workload intensity for each VM 

is fixed to 2400 client sessions. The QoS target yrefi is set to 400 request/s for both RUBiS 

instances, which is the performance that it can achieve with 100% CPU and no interference.  

Figure 4-8 shows the CPU allocations to both application VMs made by our FMPC 

controller in the experiment. Initially, both VMs have equal CPU shares. In the first phase, 

VM1 got more CPU resource (around 140%) than VM2 (around 60%) because the former 

has a higher weight. Starting from the interval 16, as the weights change to 1:1, u1 decreases 

and u2 increases, both quickly converging to 100% of CPU as expected. During the third 

phase, VM1 is assigned less CPU (around 60%) than VM2 (around 140%) because VM2 

now has a higher weight. Interesting, when one VM’s weight is set to three times of the 

other one, it does not get three times of resource allocation, because of the nonlinear 

relationship between VM resource allocation and application QoS.  

To demonstrate the effectiveness of the FMPC-based resource management, we 

compare it with the LMPC-based approach and another weight-based scheme which 
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intuitively partitions the total resource to VMs based on their assigned weights (i.e., the  

CPU caps are set to 3:1, 1:1 and 1:3 for VM1:VM2 across the three phases.). The weighted 

total throughput that is aggregated by the weighted throughputs from all applications in 

the system is used as the performance metric for host-level objective in this experiment. 

The results in Figure 4-9 illustrate that the allocation decisions made by the FMPC 

controller substantially outperform the weight-based scheme across all three phases. 

 
Figure 4-8 CPU allocations for interfering VMs 

 
 

Figure 4-9 Weighted total throughput of interfering VMs 
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During the first two phases, LMPC works as well as FMPC. However, in the third phase, 

FMPC generates about 4.7% more throughput in average than LMPC does. From the 

results, we can see that FMPC can achieve higher weighted total throughput, particularly 

in the first and third phases. Nonetheless, the FMPC approach can correctly capture these 

nonlinear behaviors and produce much better resource allocations. 

 

Figure 4-10 The 3-D fuzzy model for VM1   

 

Figure 4-11 The 3-D fuzzy model for VM2 
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To further understand the impact of interference on VM performance, we use fuzzy 

modeling to build a global two-input two-output non-linear model given the entire input 

space for the two competing RUBiS VMs, where the two control inputs are the CPU 

allocations to the VMs and the two control outputs are the measured performance for the 

individual RUBiS instances hosted on the VMs. The model is created in the following way: 

while keeping the workloads concurrently running against the two VMs, the CPU cap set 

to each VM is varied from 0% to 200%. The model is trained offline based on a total of 

350 data points collected from a set of evenly distributed cap values in this range. Each 

data point is 4-element tuple < cap1, cap2, y1, y2 >. The fitting error is 7.4%. 

For better illustration, we split this model into two 3-D models and illustrate them 

separately in Figure 4-10 and Figure 4-11 each representing the behavior of one VM under 

the interference from the other. From the models, we can see that for each application, the 

performance is not only dependent on the CPU allocation to its hosting VM but also 

affected by the CPU cap set to the other VM. With the same value of cap set to one VM, 

its application’s performance will drop as the cap value of the other VM increases. 

Nonetheless, the fuzzy logic based modeling technique is able to capture more complex 

relationship between resource allocation and performance with the presence of interference 

resulted from co-hosted VMs.  
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b) Changing Workloads with Changing Weights   

In the second experiment, we evaluate our FMPC controller on larger-scale virtualized 

system which hosts a mix types of application workloads, in which both the workloads and 

the applications’ weights change dynamically.  

Two different benchmarks are used in this experiment which are RUBiS and 

Freebench[55]. A total of 12 VMs are pinned on the same 3 pairs of physical cores, each 

configured with 1 virtual CPU and 1G RAM serving different types of application 

workloads. 8 of them are deployed with the multi-tier RUBiS setup consisting of web and 

database tiers and the other 4 VMs are deployed with Freebench. The entire experiment 

lasts for 1200s, all the RUBiS VMs is performed with the same browsing mix trace with 

varied intensity as illustrated in Figure 4-12 while all Freebench VMs are kept busy serving 

continuous requests as long as the RUBiS workloads last. We assign different weights for 

different applications, denoted as wR and wF for RUBiS and Freebench respectively. Those 

weights is varied as well as the workload as showed in Figure 4-12. The VMs that host the 

same application are treated equally. 90th-percentile response time and average response 

time are used as performance metrics for RUBiS and Freebench. The QoS target is set to 

20ms for the former and 0.8s for the latter. To make the performance of different 

applications comparable, the real-time performance measurement is normalized into the 

same magnitude by dividing its target value.  

The experiment can be divided into three phases according to the weight values, i.e., < 

wR, wF > = <0.25, 0.75>, <0.5, 0.5>, <0.75, 0.25>, for each phase the workload intensity 

of RUBiS VMs increases from 300 to 400 client sessions. The total capacity in the system 
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is limited to 6*100% CPU. Both FMPC and LMPC approaches are compared in managing 

all 12 VMs at the same time to optimizing the overall system performance.   The 

experiment can be then divided into three phases according to the weight values, and for 

Figure 4-12 Changing workload for RUBiS VMs with changing weights 
 
 

Figure 4-13 Average CPU allocations for each group of VMs  
 

Figure 4-14 Weighted performance error for all VMs 
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each phase the workload intensity of RUBiS VMs increases from 300 to 400 client 

sessions. The QoS target is set to 20ms response time for RUBiS and 0.8s loop time for 

FreeBench. To make the performance of different applications comparable, the actual 

performance measurement is normalized into the same range.  

Figure 4-13 compares the online resource allocations made by FMPC vs. LMPC. For 

simplicity, the average value of CPU allocations to VMs that run the same application is 

shown for every control interval. Figure 4-14 compares the weighted sum of the normalized 

performance errors, 1 ,  achieved by FMPC and LMPC. This metric 

reflects the total performance discrepancy from the QoS target vector , which should 

be minimized by the controller in a steady state.  

At the beginning of the first phase, FMPC and LMPC make similar allocation 

decisions, giving more CPU to the FreeBench VMs which have a higher weight than the 

RUBiS VMs. But as the RUBiS workload increases, FMPC increases the CPU allocations 

to the RUBiS VMs by shifting a total of 16% CPU allocations from the FreeBench VMs, 

while LMPC does not recognize this need and its allocation decision is almost unchanged. 

Consequently, LMPC has much higher performance errors, 63.7% in average, than FMPC. 

When the experiment transits to the second phase, both the weights and the RUBiS 

workloads are changed. FMPC handles these changes much better than LMPC, and results 

in 78.3% lower performance error in average for the first half of this phase. In the second 

half of the phase, both controllers enter the steady state, FMPC is still 8.9% better than 

LMPC in average. The difference between these two approaches is even more drastic in 

the third phase. At the beginning of this phase, both controllers favors the FreeBench VMs 
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because their higher weight. As the workload intensifies for the RUBiS VMs, FMPC 

increases their allocations which eventually exceed the FreeBench VMs, whereas LMPC 

continues to favor the FreeBench VMs. This opposite decision causes LMPC to perform 

substantially worse (up to 11 times higher performance errors) than FMPC.  

c) Realistic Workloads   

The third experiment evaluates both the scalability and stability of the proposed FMPC 

approach in managing more VMs under realistic workloads with more dynamic changes. 

In this experiment, eight VMs share four physical CPU cores, and they all run RUBiS using 

the same real-world web trace described in Section 4.5.2.c). To make the experiment more 

interesting, the VMs are divided into four groups, and each group starts the replay from a 

different offset of the trace, as shown in Figure 4-15. As a result, the four groups reach 

their peaks and values at different times in the experiment, and the total load of the VMs 

also varies over time. In this experiment, equal weight and QoS target (15ms) are set for 

all the VMs. Note that when the system is saturated, none of the VMs can meet its QoS 

target under equal resource allocations. However, this experiment focuses on how to 

optimize the overall performance by minimizing the distance to the VMs’ QoS targets. 

Figure 4-16 and Figure 4-17 compare the CPU allocations made by FMPC and LMPC. 

For better clarity, the figures show the average allocations to each group of VMs. All VMs 

start with equal resource allocations. The difference between FMPC and LMPC appears 

from the 600th second when FMPC allocates an average of 9.8% more CPU than LMPC to 

the VMs in Group 2 as the intensity of their workloads dominates over the other three. 

When the system’s total load is around its peak (1400-2200s), FMPC favors the VMs in 
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Groups 1 and 3 even more than LMPC because their higher demands than the other two 

groups. Then, when the workloads of all the other groups are decreasing (2400-2800s), 

FMPC allocates more CPU to Group 4, which is still at its peak, than LMPC. 

Figure 4-18 compares the overall performance achieved by FMPC vs. LMPC using the 

average 90th-percentile response time as the metric because all the VMs have the same 

QoS target and weight. At the beginning and the end of the experiment, the overall system 

load is low and as a result there is not much difference in performance between FMPC and 

LMPC. But when the system is more loaded, FMPC outperforms LMPC significantly. For 

example, from 1000s to 1600s, while LMPC achieves an average response time of 29.2ms 

and causes serious QoS violations (w.r.t. the 15ms target), FMPC still maintains a good 

performance (17ms average response time). From 1800s to 2600s, when the system is 

saturated, FMPC delivers a 15.6% better overall performance in average response time 

than LMPC. From 2400-2800s, as all the workloads decrease, FMPC allocates a higher 

CPU allocation (64.4%) to Group 4 than the remaining ones due to its larger ratio in the 

total workload; LMPC only allocates an average of 55.2% CPU to the same group. 

To demonstrate the effectiveness of the controller, the weighted 90th-percentile 

response time, the mean of the 90th-percentile response time measurements from all RUBiS 

VMs in the system is used as the host-level performance metric. Note that mean value is 

used due to equal weights to all VMs. The performance comparison in Figure 4-18 shows 

that the FMPC controller outperform the LMPC in coordinating multiple VMs to achieve 

better host-level performance. For the most of time especially when the total workload in 

the system is not so resource-intensive, e.g., for the first and the last 600s, LMPC works as 
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well as FMPC. However, for some time periods, more significant performance degradation 

observed in LMPC than in FMPC; from time 1000s to 1600s, while LMPC suffers from 

serious overall QoS violations, an average of 29.2ms in weighted response time, due to the 

rising intensity in total workload, while FMPC can still maintain the weighted response 

time as good as 17ms; from time 1800 to 2600s, while none of the VMs can obtain 

sufficient resource in both approaches since the system is highly overloaded and the total 

CPU amount needed is far from the host capacity, FMPC delivers a 15.6% better overall 

performance in weighted response time compared to LMPC.  According to the above 

observation, FMPC is proven to be able to provide better allocation solutions to optimize 

system performance in a more realistic scenario where multiple long workloads competing 

for the limited amount of resources.  
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Figure 4-15 The workload trace for all 8 VMs 

 
Figure 4-16 CPU allocation in LMPC 

 
Figure 4-17 CPU allocation in FMPC 

 
Figure 4-18 Weighted 90th-percentile response time for all VMs 
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4.5.4. System-level Resource Management  

The last group of experiments evaluates the scalability of the proposed two-level cloud 

resource management framework using a larger testbed. The setup described in Section 

4.5.3.c) is extended from single host to six hosts, each initially running eight RUBiS and 

nine FreeBench VMs. There are a total of 102 VMs under the management of a global 

scheduler and six node controllers. Each scheduler/controller runs on a dedicated CPU core 

to prevent interference from the benchmark VMs. An additional six client VMs are used to 

generate the workloads for the RUBiS VMs. The traces for the RUBiS VMs are created 

similarly to Section4.5.3.c), where all the RUBiS VMs are divided into six groups and each 

group starts the replay from different offset of the trace.  

 This experiment is designed to evaluate the ability of the two-level resource 

management to use dynamic VM migrations to optimize the overall performance across 

hosts. The baseline uses only the FMPC-based node controllers but without VM 

migrations. Figure 4-19 shows the level of QoS violations—the weighted sum of the 

normalized performance errors—occurred on every host over time using heat map. The x-

axis shows the time in seconds and the y-axis shows the host ID. The gray shades represent 

different levels of QoS violations (the darker the worse), whereas the white color indicates 

when all the VMs’ QoS targets are met. The results show that the use of VM migration 

substantially improves the performance of the VMs across the entire system. Overall, the 

average performance across all the VMs in the system is improved by 23.7% compared 

when migration is not used. This improvement is made possible by the global scheduler 

which decides VM migration based on the resource demands estimated using FMPC, and 



84 
 

by the node controllers which cooperate to migrate the VMs and their performance models. 

Figure 4-20 also uses a heat map to illustrate the distribution of the VMs over time when 

migration is employed to balance the load across hosts. The gray shades in the legend 

represents the number of VMs on a host. 

4.6. Summary 

This chapter first presents a new fuzzy modeling based predictive control (FMPC) 

approach which improves the adaptability in the previous chapter’s fuzzy-modeling-based 

 

Figure 4-19 Level of QoS violation (weighted sum of the normalized performance errors) 
across hosts 

 

Figure 4-20 Placement of VMs across hosts 
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solution by adjusting resource allocation based on observed performance for host-level 

objective. Then a two-level cloud resource management framework is extended to achieve 

cross-host management. The node controllers work on the VM host level to estimate VM 

resource demands and optimize each host’s resource allocations. The global scheduler 

works at the cloud zone level to optimize resource utilization across hosts through dynamic 

VM migrations. 

Extensive experimental evaluation based on a multi-tiered applications and real-world 

traces prove the effectiveness of the proposed approach. It shows that FMPC can accurately 

estimate the resource allocation for a VM hosting dynamic workload and achieve the desired 

QoS. It also shows that FMPC can capture the complex behaviors of competing VMs and 

optimize the resource allocations under dynamic workload and policy changes in the 

system. Finally, the experiment with over 100 VMs shows that the proposed two-level 

resource management can well manage a large number concurrent VMs running on 

distributed hosts and optimize the performance across the entire system. Compared to 

traditional LMPC, FMPC is shown to be better in terms of the obtained application 

performance and the speed and accuracy in achieving the application- or system-level QoS 

target. 
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5. APPLICATION-AWARE CROSS-LAYER OPTIMIZATION 

Existing resource management solutions in datacenters and cloud systems typically treat 

VMs as black boxes when making resource allocation decisions, which presents a hurdle to 

achieving efficient resource allocation for complex workloads and good application 

performance under dynamic resource availability. In this chapter, we propose a cross-layer 

optimization based on the fuzzy modeling approaches studied in the previous two chapters 

and advocate the cooperation between VM host- and guest-layer schedulers for optimizing 

the resource utilization and application performance. This approach exploits guest-layer 

application knowledge to capture workload characteristics and improve VM modeling, and 

enables the host-layer scheduler to feedback resource allocation decisions and adapt guest-

layer application configurations. As case studies, the proposed approach is applied to 

virtualized databases and map services which have challenging dynamic, complex resource 

demands and sophisticated configurations.  

5.1. Motivating Examples 

In this section, we first use several examples to motivate the need of cross-layer 

optimization in VM resource management, including both guest-to-host workload 

characterization and host-to-guest application adaptation and then discuss the related work 

in the literature. 
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5.1.1. Guest-to-Host Workload Characterization 

For the first aspect of cross-layer resource management, we use an example to 

demonstrate that it is necessary for the host-layer VM scheduler to use the knowledge from 

guest-layer for workload characterization. Coarse-grained workload information such as the 

request rate or number of concurrent users can be easily obtained without knowledge about 

application internals. However, this information is no longer sufficient when the application 

workload consists of different types of requests with diverse usage of multiple types of 

 

Figure 5-1 I/O Allocation for a changing mix in RUBiS 

 

Figure 5-2 Performance for a changing mix in RUBiS 
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resources. Here we use a concrete example based on a typical multi-tier OLTP benchmark, 

RUBiS to demonstrate this limitation (Figure 5-1 and Figure 5-2).  

We fix the RUBiS’ database tier’s query workload intensity by running 300 concurrent 

client sessions in RUBiS. But we vary the composition of the query workload by increasing 

the ratio between bidding and browsing requests to the web tier, which corresponds to the 

ratio between read and write queries to the database tier. The entire experiment lasts for 600 

seconds, starting with a browsing-only mix and then shifting to a 30%-bidding mix from 

the 300th second. The QoS target for this workload is set to 800ms. Without being aware of 

the changes in workload composition, the amount of resources needed by the RUBiS VM 

is estimated based solely on the workload intensity. Hence only 60KB/s I/O bandwidth is 

allocated to the RUBiS VM throughout the entire experiment (Figure 5-1). This allocation 

is enough for the workload to meet the QoS target in the first 300 seconds when the 

workload is not I/O intensive; but it leads to many QoS violations in the second 300 seconds 

due to the under-provisioning of I/O bandwidth (Figure 5-2). To address this problem, this 

chapter proposes to exploit application-specific knowledge of workload characteristics in 

terms of different types of requests in order to make more accurate allocation decisions.  

5.1.2. Host-to-Guest Application Adaptation 

Different virtualized applications are used as examples here to show the advantages of 

feeding back the host-layer’s resource allocation information to the guest-layer.  

In the first two examples, we use examples from virtualized database to show the 

advantage of feeding back the information of resource availability from host- to guest- 

layer. We run a workload consisting of a single copy of TPC-H [39] query Q8 against a 
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3GB database VM. Figure 5-3 and Figure 5-4 compare the query performance using two 

representative settings of the cost model parameters in database, sequential_page_cost and 

random_page_cost, denoted by seq and rand respectively. Both parameters characterize 

the database’s execution environment: the former defines the cost of fetching a page from 

disk using sequential reads whereas the latter defines the cost of a non-sequential disk page 

 

Figure 5-3 Execution time of Q8 with varied I/O allocations 
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fetch. Changing these parameters affects the database performance indirectly by 

influencing the database’s internal query cost estimation. Lower value of seq reduces the 

cost of a plan with more sequential scans on the tables; lower value of rand reduces the 

cost of a plan with more random scans, e.g., index scans. Therefore, when the ratio of seq 

vs. rand is lower, the database favors execution plans that use more sequential scans; while 

when the ratio is high, the database favors execution plans that use more random scans. 

Figure 5-3 shows the performance of, Q8 on a database VM when its memory cache is 

cold. As the I/O band-width allocated to the VM is reduced from 5000 to 1000 KB/s, the 

performance of Q8 drops in both database configurations. However, when the available 

I/O bandwidth is high, the sequential-scan-preferred configuration outperforms the 

random-scan-preferred one (by 89% at 5000KB/s). When the available bandwidth is 

reduced, the latter’s performance is much less affected and becomes faster than the former 

(by 1.9 times at 1000 KB/s).  

Figure 5-4 shows similar behavior of Q8’s performance but with respect to changing 

memory availability when performed in a warm database VM. When the available memory 

is low, the sequential-scan-preferred configuration is drastically faster than the random-

scan-preferred one (by 14 times at 384MB), because the query performance is bound by 

disk I/Os where sequential I/Os are much more efficient than random I/Os. As the memory 

availability increases large enough to cache the queried data, the random-scan-preferred 

configuration starts to outperform the sequential-scan-preferred one (by 3 times at 

1048MB), because the former touches less data (indexes are much smaller than tables). 
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The third example is demonstrated using a virtualized web-based map service. On one 

hand, such a service needs to meet the response time target for map requests; on the other 

hand, it is also desirable that the returned map imagery resolution to be as high as possible. 

In Figure 5-5, two different service configurations are used to process a workload, by 

changing the JPEG Compression Quality (JCQ) parameter which affects the quality and 

size of returned map imagery. When the available network bandwidth is sufficient, both 

configurations can meet the response time target, but the one with higher JCQ is desirable 

because of its higher image quality. But as the available network bandwidth is reduced, the 

configuration with lower JCQ becomes more suitable because it can lower the response 

time by transferring less data.  

The above examples show strong evidence of the importance of adapting virtualized 

applications according to their actual resource availability. Cross-layer optimization is key 

to enabling such adaptation.  

 

Figure 5-5 Response time of TerraFly workload with varying network allocation 

0

5

10

15

20

25

50 100 150 200

R
e
sp
o
n
se
 T
im

e
 (
m
s)

Network Allocation(Mb/s)

JCQ = 80
JCQ = 30

QoS Target



92 
 

5.2. General Approach to Cross-Layer Optimization 

The goal of cross-layer optimization is to enable VM host- and guest-layer resource 

schedulers to communicate scheduling-related information and to collaboratively improve 

the performance of a virtualized application and satisfy its QoS requirement. In traditional 

resource management solutions, VMs are usually considered as black boxes when making 

resource allocations. The host-layer VM scheduler is agnostic of the guest-layer 

application-specific resource scheduling, whereas a guest-level application scheduler is 

also unaware of the host-layer VM resource allocation. Such transparency is important for 

reasons such as portability and legacy support, but for applications requiring strong QoS 

guarantees, a tradeoff can be made to allow certain awareness and cooperation between 

host and guest in order to meet the QoS target.  

Such cross-layer optimization is two-fold. First, the host-layer scheduler can leverage 

the guest-layer application-specific knowledge to improve the VM resource allocation 

decision. Second, the guest-layer scheduler can adapt its application-specific scheduling 

based on the host-layer VM resource allocation to improve the application performance 

under changing resource availability. We will describe the general approach to both of 

these aspects of cross-layer optimization in this section. 

5.2.1. The Framework of Cross-Layer VM Resource Management 

The cross-layer optimization can be integrated onto the two existing resources 

management approaches discussed in Chapter 3 and 4. Here for simplicity, we consider to 

instantiate it on the first solution. In the fuzzy-modeling-based resource management 

system, since it directly employs a workload-resource model for allocations, it can better 
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demonstrate the effectiveness of our cross-layer optimization in improving the modeling 

accuracy.  

The main challenges to VM resource management are how to efficiently allocate 

resources to VMs and how to do so automatically and continuously, which have been 

already addressed in our previous chapter by employing a fuzzy-modeling approach to 

learn a VM’s resource demand and allocate resources according to its QoS target in an 

autonomic manner. Fuzzy logic is used to create a VM’s resource usage model 

automatically from data observed from the system without assuming any a priori 

knowledge about the system’s structure. It is shown to be able to effectively capture 

complex, nonlinear resource usage behaviors in a virtualized system. Figure 5-6 illustrates 

the architecture of our fuzzy-modeling-based resource management system integrated with 

our proposed cross-layer optimization. The four key modules work in a more efficient way 

with the help of cross-layer communication. As a workload executes on the VM, the 

 
Figure 5-6 Architecture of cross-layer optimization on fuzzy-modeling-based resource 

management system 
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Application Sensor abstracts the workload W(t) more accurately based on the knowledge 

from application layer, and the VM Sensor monitors the corresponding performance P(t) 

and the VM’s resource usage R(t). With a better understanding of the application workload, 

the Adaptive Learner is able to learn a fuzzy model that reflects the relationship between 

an actual workload and its VM’s resource needs. With this model and the precise 

knowledge of current workload W(t), the Resource Predictor can estimate the accurate 

resource needs for time t+1. As the Resource Allocator adjusts the allocation accordingly, 

the allocation decision is feedback to the guest application as well. The internal self-

optimization process of the application is then invoked and the corresponding application-

level parameters are tuned according to the changes in resource availability for better 

performance. Together, these modules form a closed-loop for the VM’s resource control 

and optimization. 

Fuzzy logic is employed to build the model based on the qualified input-output data 

pairs, <W(t), R(t)> whose workload performance P(t) meet the desired QoS target. Both 

the workload input W(t) and the resource usage output R(t) can be vectors with multiple 

dimensions. With the fuzzy model created by the Adaptive Learner, the Resource Predictor 

performs fuzzy inference to generate an estimate of the resource needs R given the 

workload input W. This estimation is then sent to the Resource Allocator to guide the VM’s 

resource allocation. More details on fuzzy modeling can be found in Chapter 3. 

5.2.2. Guest-to-Host Optimization  

The guest-to-host aspect of our proposed cross-layer optimization is to exploit the 

guest-layer application-specific information to improve the understanding of the VM 
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workload’s resource usage patterns. Such knowledge will enable the host-layer resource 

scheduler to more accurately estimate the VM’s resource demands and more agilely adapt 

to its workload changes.  

Specifically, we propose to analyze an application’s workload by describing it in terms 

of the characteristics that are relevant to its VM resource usage behaviors. Such 

characteristics provide important inputs to the effective modeling and prediction of the 

VM’s resource needs. A commonly used workload characteristic is its overall intensity 

such as the total request rate or total number of online users. It is often strongly correlated 

with the VM’s resource demands and can be easily obtained without requiring much 

knowledge of the application’s internals. However, this characteristic alone is not sufficient 

for a real-world workload that consists of requests with diverse use of resources. For a 

simple example, a web workload consisting of only static web page has distinct resource 

needs versus one containing also considerable dynamic web page requests, even if their 

request rates are exactly the same (the former consumes mainly CPU while the latter 

requires also substantial I/O bandwidth). Therefore, it is important to characterize a 

workload’s composition of different types of requests in terms of their resource usage 

patterns. But such characterization is difficult to do in existing VM resource management 

solutions which treat VMs as black boxes where application-specific knowledge is hidden.  

To address this problem, we propose cross-layer optimization which allows a host-layer 

scheduler to exploit a guest-layer application’s knowledge to understand the resource usage 

patterns of its received requests in the workload. For example, for web workloads, the web 

server’s knowledge can be exploited to understand whether the received HTTP requests 

are targeting static or dynamic content. Such characterization of workload composition can 
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be a key to understanding the VM’s demands of CPU and I/O resources. For the workloads 

that contain more complex requests, such as in Online Analytical Processing (OLAP) 

databases, more sophisticated application knowledge is required to analyze their resource 

usage patterns. We propose to characterize such workloads by leveraging the application’s 

internal cost model, which is discussed in detail in Section 5.3.  

The characterization of each individual request’s resource usage pattern can be 

aggregated to describe the entire workload’s resource usage characteristics. However, for 

workloads containing vast diversity of requests, it is impractical to describe all the requests 

in the workload characterization. A concise representation is needed to effectively 

compress all the request information, which is critical to ensure low overhead and high 

robustness of the characterization. To this end, we propose to use data clustering techniques 

to group a workload’s queries into clusters, so that those within a cluster are more similar 

in terms of their resource requirements to each other than the ones from different clusters. 

Assuming after the clustering a workload consists of m different groups of requests (r1, … 

rm), the entire workload’s composition can then be characterized by the request rates of all 

these groups (Wr1, …, Wrm), where each group represents a distinct resource usage pattern. 

Many well established offline clustering algorithms are available for use, such as K-

means, hierarchical clustering, subtractive clustering, etc. However, because of the 

dynamic nature of real-world workloads, the request cluster analysis should be carried out 

in an online fashion. To achieve this, we propose online, adaptive request clustering for an 

online, dynamic VM system, in which the clustering is performed in a way that is self-

learning and self-adapting, without needing the number of clusters to be pre-specified. The 

basic idea of the online adaptive request clustering is to perform one-pass, non-iterative 
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clustering of a stream of requests. The procedure starts with an empty set of clusters and 

creates the first cluster with the first request sample assumed to be the cluster center. As 

more request samples come in, either a new cluster is added with the center based on the 

new data, or an existing cluster is removed or updated based on certain criteria (e.g., the 

radius set in subtractive clustering [32]). Such a clustering approach has the ability to 

gradually adapt to the changing data patterns. It allows flexible clustering with an evolving 

shape so that it can better match the current data distribution. The computation complexity 

of this non-iterative approach is also lower compared to other iterative algorithms. 

The above proposed workload characterization process will be performed online 

periodically, in which the recently received requests will be used to update the workload’s 

current clustering results. In this way, the characterization does not need a priori 

knowledge about all the queries that compose the workload, and it can dynamically adapt 

to the changing workload composition.   

5.2.3. Host-to-Guest Optimization 

The host-to-guest aspect of our proposed cross-layer optimization is to feed back the 

host-layer VM resource allocation decision and enable the guest-layer application-specific 

scheduling to adapt for better performance.  

Many applications need to be tuned to optimize their performance based on the resource 

availability of the hosting system. For example, a web server needs to tune parameters such 

as the number of concurrent threads based on its host’s available memory. A database needs 

to tune its internal cost model (e.g., the CPU and I/O costs of processing a tuple) based on 

its host’s resource availability so that it can correctly estimate the costs of different query 
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execution plans and select the most efficient one to use. Another example application is a 

simulator that tunes the modeling resolution based on its host’s resource availability and 

the performance requirement.  

When such an application is hosted on a physical machine, it needs to be tuned only 

once during the initial deployment. However, on a VM, the resource availability can vary 

over time, because of 1) changing resource contention from other co-hosted VMs as they 

come and go dynamically and their workloads vary over time; 2) changing resource 

allocation policy such as VM priorities or Service-level Agreements (SLAs). Nonetheless, 

the changing resource availability to a VM is hidden to the applications in existing VM 

resource management solutions. As a result, the application is stuck with the initial 

configuration assuming a resource availability that is no longer valid. It cannot adapt itself 

to use a configuration that is more efficient in application performance and/or resource 

utilization when the VM’s resource becomes either under pressure or abundant. 

In order to address this problem, we propose cross-layer optimization for the host-layer 

scheduler to feedback the resource allocation decision to the guest-layer and automatically 

adapt the latter’s configuration for improved performance given the current resource 

availability. The general approach to this cross-layer optimization can be formally 

described as follows. Assuming that there are M different types of resources, such as 

memory, CPU capacity, or I/O bandwidth, Ri=[Ri1, …RiM] represents the amount of 

resource of different types available for workload Wi of application i. The goal of the 

performance optimization is to find a feasible set of configuration parameters, denoted as 

Ci, of the application i that the performance of the workload Pi (Ri, Wi, Ci) is optimized.  
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On a physical machine, this process needs to be done only once when an application is 

first deployed, because the total amount of resource is fixed. We only need to find out the 

appropriate Ci that leads to the best performance. However when the application i is 

virtualized, the optimization needs to be done dynamically as the VM’s resource 

availability Ri changes over time. The configuration Ci of the application need to be 

adjusted accordingly as the given resource allocation to the VM changes. In order to enable 

such adaption, we need to have a means of mapping the given recourse allocation Ri to a 

specific configuration Ci by finding the optimal parameter settings for the current 

environment. Although this mapping is application specific, there are some general steps.   

1) Find out the set of possible parameters Ci = [ci1,.. cik, cin] that contributes to the 

application performance. For each parameters cik, we need to determine a function that 

defines cik as a function of Ri, i.e., fik(Ri). 

2) Given a certain resource allocation, run a general workload of the virtualized application 

for the calibration process. Iterate a variety different value cik and measure its 

performance. Collect the parameter value cik_opt with the best performance.  

3) Repeat Step 2 under multiple different candidate resource allocation.  

4) Collect the data pairs <cik_opt , Ri> for each allocation, perform regression analysis on 

the set of the data to fit the function cik_opt = fik(Ri).     

Once such a mapping is built for an application, the resource availability to the VM can 

be directly fed into the application to enable its adaptation.  

The aforementioned two aspects of cross-layer optimization are integrated with our 

existing fuzzy-modeling-based VM resource management middleware. For guest-to-host 
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optimization, the workload is characterized by Application Sensor based on application-

specific knowledge, which is used by the Adaptive Learner for better modeling and 

predicting the VM’s resource usage behavior. For host-to-guest optimization, as Resource 

Allocator adjusts the allocations based on the prediction given by the fuzzy model, it also 

feeds back this decision to the VM for the application to tune its parameters for 

performance optimization. The resulting autonomic resource management system can not 

only automatically allocate resources to VMs based on their dynamic workload demands 

but also adaptively improve application performance even when the system is overloaded 

and the VMs cannot get their requested resources. 

5.2.4. Integration with Fuzzy-modeling-based VM Resource Management 

The aforementioned two aspects of cross-layer optimization are integrated with the 

fuzzy-modeling-based VM resource management introduced in Section 5.2.1. For guest-

to-host optimization, the workload is characterized by Application Sensor based on 

application-specific knowledge obtained from the guest. Specifically, Application Sensor 

can be implemented as a proxy which is deployed on the host of the application. It 

intercepts all the requests to the application and uses application-specific knowledge to 

characterize the requests before forwarding them to the application. The workload 

characterization is used by the Adaptive Learner for better modeling and prediction of the 

VM’s resource demands. For host-to-guest optimization, as Resource Allocator adjusts the 

allocation based on the prediction given by the fuzzy model, it also feeds back this decision 

to the guest for the application to tune its parameters for better performance. Specifically, 

this adaptation can be implemented using a daemon running on the guest which 
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periodically obtains resource allocation decision from the Resource Allocator, computes 

the optimal parameter settings, and adjusts the parameters through the application’s 

configuration interface. 

The resulting autonomic resource management system is able to not only automatically 

allocate resources to VMs based on their dynamic workload demands but also adaptively 

optimize the application configuration as the resource availability changes over time. The 

stability of the system is ensured by two factors: 1) guest-layer application adaptation 

occurs at a much coarser time granularity (e.g., every minute) than host-layer resource 

adjustment (e.g., every 10 seconds); 2) the host-layer is able to quickly update its fuzzy 

model to capture a VM’s new behaviors and continue to accurately predict its demands 

when the guest-layer application adapts its configuration. The next section presents two 

concrete case studies using two different and representative applications, databases and 

web-based map services, to demonstrate the cross-layer optimization approach. 

5.3. Case Study 

In this section, we take virtualized databases as an interesting and challenging case 

study of our proposed cross-layer resource management approach. Traditionally, databases 

are hosted on dedicated physical servers that have sufficient hardware resources to satisfy 

their expected peak workloads with desired QoS. However, this is often inefficient for the 

real-world situations in many application domains such as e-business and stream data 

management, where the workloads are intrinsically dynamic in terms of their bursty arrival 

patterns and ever-changing unit processing costs. Using VMs to host databases can 

effectively address this limitation. Virtualization allows a database to transparently share 
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the consolidated resources with other applications, with strong isolation between their 

dedicated VMs. In a virtualized system, a database’s resource usage can elastically grow 

and shrink based on the dynamic demand of its workload. In addition, it allows efficient 

database distribution and replication for performance and reliability improvements. 

5.3.1. Virtualized Database 

a) Guest-to-Host Workload Characterization 

Databases are challenging applications because of their highly complex and dynamic 

resource usage behaviors. Database queries can be both CPU and I/O intensive and a 

typical database workload can have a diverse variety of such queries with dynamically 

changing composition. Nonetheless, a database’s internal query optimizer has intimate 

knowledge of a query’s resource usage pattern. Such knowledge can be extracted from the 

database and used to classify queries for characterizing the entire workload in terms of its 

resource demands. The result of the workload characterization can be then used as input to 

the VM’s fuzzy model to improve its accuracy and adaptability under dynamic changes of 

the workload. Typically, the query cost is defined as a function of the amount of resource 

usages estimated by the database, which can be extracted as a vector of different resource 

costs. Note that the database’s cost estimation cannot be directly used to infer its VM’s 

resource needs because, first, its accuracy is often limited [24], and second, it does not 

capture the entire VM’s resource needs. 

Specifically, the PostgreSQL database system can be used as an example to 

demonstrate the guest-to-host workload characterization. PostgreSQL’s internal cost 

model is defined as a function of a set of database cost parameters, denoted as CostD(C) 
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where C=[c1, c2,.., cm]. Each cost parameter represents the unit cost of either CPU or I/O 

usage associated with an operation in database. For example, seq and rand represent the 

overhead of a single sequential and random I/O to fetch a page from disk, respectively; 

cpu_tuple_cost estimates the CPU cost of processing each row in a table. The total cost 

that aggregates the costs of all operations in a query plan can be broken down into two 

parts: the total CPU cost and the total I/O cost. Each query can be expressed as a 2-

dimention cost vector <CostCPU, CostI/O >.  

To characterize a workload, the Application Sensor first extracts the cost vector for all 

unique queries in a database workload and then performs subtractive clustering [9] on the 

set of collected query cost vectors. This algorithm initially treats each query vector as a 

potential cluster and selects cluster centers based on the density measures. By setting the 

radius of a cluster r, any pair of the query vectors with distance d<r will fall into the same 

cluster indicating queries with similar resource usage patterns. As soon as a query vector 

arrives, the Application Sensor computes the distance to each existing cluster center and 

classifies it into the most similar cluster. If it is not within the radius of any cluster, then a 

new cluster with this new query vector will be added.  

Finally, as the workload runs, the Application Sensor measures query intensity online 

by counting the request rate for each individual cluster. For example, a workload mix W 

consists of N queries, and after clustering only K clusters are generated where K<<N. The 

work-load can be abstracted as a vector of arrival rates of these clusters < C1, C2, …, CK >. 

Then the above arrival rate vector that reflects the current characteristics of the workload 

is fed to the Adaptive Learner as an input for modeling the VM’s current usage behaviors. 

At the same time, the workload characterization of current time t is also used as the input 
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for the Resource Predictor to estimate the resource demands of the next time step t+1 based 

on the assumption that no abrupt change happens to the workload within one period of 

time. 

b) Host-to-Guest Database Adaptation 

Databases represent a typical type of applications that have sophisticated internal 

mechanisms to optimize their performance based on their knowledge about the hosting 

environments. Based on the host’s resource capacity, a database’s query optimizer can 

automatically evaluate the costs of different query execution plans and choose the most 

efficient one to execute queries. As the availability of resources changes, critical 

parameters on which the query optimizer depends on for cost evaluation should also be 

updated accordingly, which will lead to better resource utilization and more efficient query 

executions.  

Specifically, a database often uses the aforementioned cost model CostD(C), defined 

as a function of a set of parameters C, to estimate the costs for query execution plans. Each 
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parameter ck in the cost model serves as a cost factor related to a certain type of operation 

in query processing such as table scanning and tuple processing. Appropriate values on 

these parameters that reflect the actual resource availability will help the query planner 

choose the most efficient operations. Taking PostgreSQL as an example, as shown in 

Section 5.1.2, the query optimizer switches from using sequential scans to random scans 

for processing the TPC-H query Q8 as the ratio between seq and rand increases. Such 

tuning is necessary when, e.g., disk I/O contention happens and more efficient scanning 

method is desired given the limited I/O bandwidth. 

To tune the cost parameters given changing resource availability, a mapping needs to 

be created from the resource allocation to the optimal parameter values. Because all the 

cost parameters in a cost model are factors normalized on the same scale, only the changes 

in their relative values result in alternative query execution plan. Therefore, the mapping 

needs to be built only between the optimal ratio of the cost parameters and the resource 

allocation to the VM.  

For example, to investigate the impact of I/O allocation on the scanning methods, the 

ratio of the aforementioned two I/O cost parameters is considered. A simple query is used 

to benchmark this ratio, which reads all the rows from a large table. The query is executed 

by different plans (sequential scan vs. random scan) with different amount of I/O 

allocations. The performance is observed for each scanning plan under different I/O 

allocations. Since the cost of executing this simple query is mainly from the scanning 

operations, the performance of different plans (sequential scan vs. random scan) can be 

considered as the estimation of the I/O cost parameters (seq vs. rand) for different I/O 

allocations. In this way, a mapping is built between the I/O allocation and the I/O cost 
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parameters (Error! Reference source not found.). When the VM’s I/O allocation 

changes, the ratio between these two parameters can be then adapted accordingly so that 

the database can choose the most efficient query execution plan under the given resource 

allocation.  

In addition to parameters that reflect the knowledge about the database’s execution 

environment, there are also other types of parameters that defines the database’s own limit 

for certain type of resource usage. Such parameters should also be adapted according to the 

database VM’s actual resource availability. For instance in PostgreSQL, the parameter 

shared_buffers changes the amount of memory that the database uses for caching data. A 

reasonable setting of shared_buffers should be proportional to (e.g., ¼) the amount of 

memory allocated to its VM. 

 
 

Figure 5-8 The mapping between map service JCQ and workload intensity and VM 
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5.3.2. Virtualized Map Services 

Another interesting case study of this chapter’s cross-layer optimization is web-based 

map services [33][36]. Map services are the most important applications of modern 

geographic information systems, which serve requests for maps and related geographic 

information for a variety of clients over Internet. Because the requests to a map service are 

often well organized by the map tiles, their resource usages are relatively uniform, and a 

map service workload can be well characterized by using the workload intensity only (e.g., 

the number of requests per second, the number of concurrent users). Hence, this case study 

focuses on the second aspect of the cross-layer optimization, the host-to-guest adaptation 

of map services. 

Map services represent applications that can tune their QoS based on the resource 

availability (other examples include search engines and streaming services). The 

configurations that need to be tuned on a map service include the resolution and 

comprehensiveness of the returned maps and the selection of different search strategies for 

geographic information. The settings of these configurations affect different aspects of a 

map service’s QoS and need to be carefully tuned according to its host’s resource capacity. 

Hence, automatic adaptation becomes important for a virtualized web map service when 

its resource availability changes dynamically. 

Specifically, this solution focuses on one key tunable parameter in a map service, the 

JPEG compression quality (JCQ), which affects two different aspects of the QoS -- 

response time and imagery quality. JCQ determines the compression level of a map image 

returned to a request. Setting a higher JCQ value results in returning maps with a better 
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resolution which also require more data transfer. This case study assumes a typical service-

level objective which is to meet the response time target while delivering maps with the 

highest possible resolution. As illustrated in Section 5.1.2, this objective cannot be met 

using a fixed JCQ setting in a virtualized web map system where the available network 

bandwidth varies over time. It is necessary to adapt the JCQ setting automatically based on 

the VM’s network bandwidth availability.   

In order to use the host-to-guest map service adaptation for JCQ tuning, a mapping 

needs to be created from the network bandwidth allocation to the optimal JCQ value. The 

optimal JCQ depends on the workload intensity, the available network bandwidth, and the 

response time target. To build the mapping, the map service’s performance is profiled by 

varying the network band-width allocation and workload intensity under different JCQ 

settings. Based on these collected performance data, the optimal JCQ can be then found by 

searching for the highest JCQ value with which the corresponding performance satisfies 

the given response time target.  

In this way, the mapping is built from the network bandwidth availability and workload 

intensity to the optimal JCQ for the given response time target. The profiling time can be 

reduced by collecting only a subset of the data and using regression to build the rest of the 

profile. Error! Reference source not found. illustrates two of such mappings for the 

response time targets of 22ms and 17ms. A total of 144 data points were collected to build 

a mapping in this figure and the fitting error is 2.95% on average. With these mappings, 

the optimal JCQ value can be then adjusted automatically as the network availability or the 

workload intensity changes. 
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5.4. Evaluation 

5.4.1. Setup 

This section evaluates cross-layer optimization approach using both databases and web 

map services discussed in the case studies. The testbed is a physical machine equipped with 

two six-core 2.4GHz AMD Opteron CPUs, 32GB of RAM, and one 500GB 7.2 RPM SAS 

disk. 

To evaluate the database system, Xen 3.3.1 is installed to provide the VMs, where the 

operating system for both Dom0 and DomU VMs is Ubuntu Linux 8.10 with 

paravirtualized kernel 2.6.18.8. The evaluated databases are hosted on DomUs, while the 

resource management system is hosted on Dom0. The management system monitors and 

controls the database VM’s usage of both CPU cycles and disk I/O bandwidth every 10 

seconds. In the VM Sensor, resource monitoring is done using xentop and iostat, where the 

I/O bandwidth us-age is considered as the sum of reads and writes per period of time. In 

the Application Sensor, a database proxy deployed on Dom0 is used to measure the 

performance of the database VM. The Resource Allocator uses Xen’s credit CPU scheduler 

to assign CPU allocations and Linux’s dm-ioband I/O controller to set the cap for disk I/O 

bandwidth. 

Two typical database benchmarks, TPC-H and RUBiS, are used in the experiments. 

Experiments performed on TPC-H benchmark are based on synthetic workloads with 

highly complicated queries in order to show the accuracy in modeling complex resource 

usage behaviors. For RUBiS, real-world workload is used to show the adaptiveness to 

dynamic changes in virtualized system.  
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To evaluate the web map service, Microsoft Hyper-V 6.2 [34] is deployed to provide 

the virtualization environment. The operating systems on parent and child partitions are 

Windows Server 2012 and Windows Server 2008 R2 Datacenter respectively. The map 

service application is hosted on the child partition configured with 1 CPU core and 4GB 

memory. The resource management system deployed on the parent partition monitors and 

controls the network I/O bandwidth to the child partition through the Hyper-V‘s bandwidth 

management tool. The specific map service considered here is TerraFly [35] , a production 

web-based map system serving requests from over 125 countries and regions and providing 

users with customized aerial photography, satellite imagery and various overlays. The real 

workload traces collected from production TerraFly system are used in the evaluation. 

5.4.2. Guest to Host Optimization 

a) TPC-H Experiments 

TPC-H provides 22 representative queries of business decision support systems, which 

involve the processing of large volumes of data with a high degree of complexity. Based 

on these queries, we construct synthetic workloads with varying demands of different types 

of resources. With peak-load based allocation, 100% CPU and 10MB/s I/O are allocated 

to the database VM statically. With fuzzy-modeling-based allocation, there are two phases 

involved. In the training phase, the fuzzy model is learned without resource restrictions, 

while in the testing phase the model is applied to predict the resource demands and control 

the resource allocation. The evaluation of more realistic workloads with online training is 

discussed in Section 5.4.3. The database used here is PostgresSQL 8.1.3 with 2GB of data 

on a VM with one CPU and 1GB RAM. 
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To characterize the TPC-H workload, subtractive clustering is performed on all the 22 

queries based on their cost vectors, where a small radius of 0.1 is used in the clustering to 

derive tight clusters. The result identifies four clusters. Cluster I containing single query 

Q1 and Cluster II containing single query Q18 represent highly and moderately CPU-

intensive queries, respectively. Cluster III including Q4, Q6, Q15 and Q12 represents 

highly I/O-intensive queries. Cluster IV including most of the remaining queries represents 

simple queries which are neither CPU nor I/O intensive. This result is experimentally 

verified by the actual resource usages when running the queries separately on the database 

VM. The only exception is Q22 which is identified as another single-query cluster and 

estimated by the database’s cost model as both CPU and I/O intensive. 

However, its actual usage of CPU and I/O is very low, similarly to the queries in Cluster 

III, which confirms our discussion that the database’s query cost estimation cannot be used 

directly to infer the VM’s resource needs.  

CPU-intensive Workload 

The first experiment is based on a CPU-intensive workload consisting of Cluster I and 

II queries, Q1 and Q18. The workload’s total request rate is varied from 20 to 50 

request/minute while the percentage of Cluster I is also varied from 0% to 80%. About 20 

data points with different combinations of request rate and cluster ratio evenly selected 

from both input ranges are used to train the VM’s fuzzy model. With workload 

characterization (fuzzy modeling w/ char), both the request rate and cluster ratio are 

considered as a 2-dimention input vector for the fuzzy modeling. The result is a 3-D 
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fuzzy model with 7 rules. In contrast, without workload characterization (fuzzy 

modeling w/o char), only the request rate is used for the input and the ratio factor is ignored. 

As a result, a 2-D fuzzy model with 4 rules is trained. To evaluate these two models, the 

workload is run with a different set of request rate and cluster ratio combinations (totally 

60 data points) while the models are used to control the VM’s resource allocation 

separately. 

 

Figure 5-9 CPU allocations for a CPU-intensive TPC-H workload 

 

 

Figure 5-10 Performance for a CPU-intensive TPC-H workload 
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Error! Reference source not found. compares the VM CPU allocations given by these 

two models against the actual CPU usage of the VM when the resource is allocated based 

on peak load. Error! Reference source not found. compares the workload performance 

under these two CPU allocation schemes against the ideal performance under peak-load-

based allocation. The result shows that the CPU allocation given by the fuzzy model 

created with workload characterization closely follows the VM’s actual demand; the 

average error is below 2.3%. The model created without workload characterization can 

lead to significant under- or over-provision; the average error is about 36.7%. The 

difference in CPU allocation accuracy leads to significant difference in the query 

workload’s performance. When using the model created with workload characterization, 

the query response time is always at the same level as the peak-load-based allocation; the 

difference is less than 2s. When using the model created without workload characterization, 

in some case it leads to up to 27s delay in response time with a 15% under-provision of 

CPU; in another case, it results in an over-provision of CPU by 15.7% but achieves a 

response time only 0.6s better than the former scheme. 

CPU/IO-intensive Workload 

In the second experiment, we study a more interesting and challenging workload which 

includes not only CPU-intensive (Q1 from Cluster I) but also I/O-intensive queries (Q18 

from Cluster II and Q6 from Cluster III). As the workload runs, the total percentage of 

Cluster I+II in the entire workload is varied from 0.1 to 0.9 (the ratio between Cluster I and 

Cluster II is fixed) and the total request rate also varies from 20 to 80 request/minute. 

Similarly, different sets of data points are evenly taken from these data ranges for training 

(450 data points) and testing (120 data points). The experiment is performed separately 
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using fuzzy-modeling-based resource allocation w/ and w/o characterization. The former 

captures the workload using a vector [Request rate, Percentage of Cluster I+II] as the 

input, while the latter considers only the total request rate of the workload. Both CPU and 

I/O are controlled in the two cases.  
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Error! Reference source not found. and Error! Reference source not found. 

compare the VM CPU and I/O allocations in these two cases against the actual CPU and 

I/O usages of the VM when the resource is allocated based on peak load. Error! Reference 

source not found. compares the workload performance of these two allocation schemes 

 
Figure 5-11 CPU allocations for a CPU/IO-intensive TPC-H workload 

   
Figure 5-12 I/O allocations for a CPU/IO-intensive TPC-H workload 

   
Figure 5-13 Performance for a CPU/IO-intensive TPC-H workload 
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against the ideal performance under peak-load-based allocation. The results show that the 

fuzzy modeling with workload characterization method can predict the VM’s actual 

demands with an average error of 3.5% for both CPU and I/O allocations. It is more 

accurate than the case without characterization in which the average error is about 37% for 

CPU and 73% for I/O. As a result, in the former case it can always achieve the same level 

of performance as in the peak-load-based allocation, with only a 1.5s delay in average 

response time; while in the latter case, the response time is always worse than in the peak-

load-based case. In the worst case, it produces either a 36% under-provision of CPU which 

causes a 15s delay or a 27% under-provision of I/O for 11s additional delay. Noticed that 

the performance in the without characterization case is always worse than the other two 

cases due to the misprediction of VM resource demands: although over-provision of either 

CPU or I/O does happen, the demands for CPU and I/O cannot be both met at the same 

time.    

b) RUBiS Experiments 

For RUBiS experiment, the same setup as in Chapter 3.4.3 is deployed. The database 

tier is hosted on the dedicated VM to be controlled. Realistic workloads are simulated 

according to the real traces from the 1998 World Cup site. The workload with fixed 

intensity but changing ratio of browsing to bidding request (Error! Reference source not 

found.) is performed on the virtualized database.      

We compare the performance of the fuzzy model created with workload 

characterization versus without it. The former considers both the workload’s intensity and 

composition as the input to the modeling whereas the latter considers only the intensity. 
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The composition can be captured by the ratio of two types of queries, the SELECT queries, 

which are read-only, and the INSERT and UPDATE queries, which are writes to the 

database. These characteristics are captured by interposing a MySQL proxy before the 

database tier. Since this experiment is performed completely online, only the first 10 data 

points collected are used to initialize the VM’s fuzzy model. Afterwards the model is used 

to allocate resources right away and in the meantime it is updated with new observed data 

every 10s.  

The desired QoS target for these workloads is defined according to the performance of 

the database VM under the peak-load-based resource allocation which statically assigns 

70% CPU and 320KB/s disk I/O bandwidth. In the experiment, the QoS target is set to 

100ms for the average response time within each period. A 10% margin is added to the 

resource allocation predicted by the fuzzy model. When the QoS target cannot be met due 

to inaccuracy in the model, a backup policy is invoked to allocate a fixed amount of I/O 

bandwidth (500KB/s) to the VM temporarily. This backup mechanism allows the 

performance loss to be quickly recovered and ensures that the model can be timely updated 

to reflect the VM’s current resource needs. It is invoked when two consecutive QoS 

violations occur and revoked after the QoS target are met again for three consecutive 

periods of time. Afterwards, the fuzzy model updated with the new measurements will be 

used again for guiding the resource allocation. Error! Reference source not found. and 

Error! Reference source not found. show the I/O predictions and allocations using a 

fuzzy model created with or without workload characterization, respectively, for the 

changing composition RUBiS workload. Error! Reference source not found. compares 

the corresponding performance in both cases with the pre-set QoS target. For the fuzzy 
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modeling with workload characterization, it is able to predict the VM’s resource needs 

throughout most of the experiment and require only a few (3 times) invocations of the 

backup allocation policy. It can quickly react to the changes in workload composition and 

Figure 5-14 Trace for RUBiS with changing composition 

 
Figure 5-15 I/O allocation with workload characterization 

 
Figure 5-16 I/O allocation without workload characterization 

 

Figure 5-17 Performance comparisons for RUBiS workload 
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deliver the desired QoS for 92% of the time; the average response time is 44.9ms 

throughout the entire experiment. However, without characterization, the QoS target is 

violated for 15% of the time, and the backup policy is triggered twice more often (7 times). 

The resulting average response time of 119.5ms cannot meet the QoS target, almost 3 times 

worse than the one with characterization. 

 
Figure 5-18 Performance of a TPC-H workload with 50 request/s 

 

 
Figure 5-19 Performance of a TPC-H workload with 30 request/s 
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5.4.3. Host-to-Guest Optimization 

a) TPC-H Experiments 

This experiment demonstrates the effectiveness of the host-to-guest optimization by 

automatically tuning a database system under varying memory availability. An I/O 
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intensive workload consisting of a mix of duplicated copies of Q4, Q6, Q8 and Q14 from 

TPC-H queries is run on a database with warm memory, where the query processing can 

be done mostly using data cached in memory. The intensity of the workload can be varied 

by changing the inter-arrival rate of the queries from 4.8s to 8s with a corresponding request 

rate of 50 and 30 queries per minute. To simulate different levels of memory contention, 

 
Figure 5-20 Network bandwidth allocations to TerraFly VM 

 
Figure 5-21 TerraFly’s JCQ settings  

 
Figure 5-22 TerraFly’s performance with different JCQ settings 
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the database VM’s memory allocation is varied from 2048MB, 1536MB, 1024MB to 

512MB while the workload is running at a given request rate. 

Error! Reference source not found. and Error! Reference source not found. 

compare the performance of two TPC-H workloads with different intensities from the 

scheme that uses host-to-guest optimization (Dynamic) vs. with-out it (Static). The former 

dynamically adapts the ratio between seq and rand as the availability memory changes; the 

latter uses a static ratio of 1:4. The result shows that the adaptation improves the database 

performance for both workloads as the available memory reduces. For example, an average 

of 33.5% improvement in query execution time is achieved when the VM’s memory is 

512MB. The improvement increases as the workload becomes more intensive because the 

memory contention gets worse. For the workload with 50 request/s, as soon as the memory 

allocation is reduced to 1.5GB, about 41% speedup is observed; while for the workload 

with 30 request/s, the advantage of optimization becomes evident (27% speedup) only 

when the available memory is reduced to under 1GB.  

The host-to-guest optimization achieves the above performance improvement because 

it enables the database to adapt its query execution strategy as the memory availability 

varies. Specifically, it allows the database switch from a random-scan-preferred 

configuration to a sequential-scan-preferred one by tuning its ratio of seq vs. rand from the 

default 1:4 ratio to 1:16 as the available memory decreases from 2GB to 512MB. When 

the memory is sufficient to cache all the queried data, a random-scan-preferred 

configuration is advantageous because it scans indexes and accesses less data. When the 
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memory is not sufficient to cache the queried data, the query processing becomes disk 

bound where sequential scans are more efficient. 

b) TerraFly Experiments 

To demonstrate the effectiveness of the host-to-guest adaptation for TerraFly-based 

map service, two scenarios are considered in this experiment. In the first scenario, the 

amount of available network bandwidth to TerraFly is contended by another VM which 

runs an FTP server. The trace in Error! Reference source not found. shows that the 

network bandwidth allocated to TerraFly is first reduced from 200 to 100 Mbps as a file 

transfer starts on the FTP VM, sustained at 100 Mbps during the transfer, and finally 

increased back to 200 Mbps when the transfer completes. With the host-to-guest 

adaptation, the network resource availability is explicitly fed back to the TerraFly VM and 

used to adapt the JCQ for the map service.  

Error! Reference source not found. compares the performance of TerraFly using 

three different JCQ settings shown in Error! Reference source not found.: one with a 

dynamic JCQ adapted by host-to-guest optimization (Dynamic) versus two using static 

JCQ settings (Static). The results show that the host-to-guest adaptation allows the response 

time target (20.5ms) to be met throughout the experiment. In contrast, using a static high 

JCQ misses the response time target most of the time and causes up to 15% delay in 

response time. Although using a static low JCQ can meet the response time target, it fails 

to provide a good image quality to map requests and wastes the available network band-

width when it is sufficient. Compared to it, the host-to-guest adaptation is able to fully 

utilize the available network resources and improve image quality by 40% in average. 
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Figure 5-23 A real TerraFly workload with changing intensity 

 

 
Figure 5-24 TerraFly’s JCQ settings  

 

 
Figure 5-25 TerraFly’s performance with different JCQ settings 
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In the second scenario, a fixed amount of network bandwidth (50 Mbps) is allocated to 

the TerraFly VM while a real workload collected from the production TerraFly system is 

replayed with a 60-fold speedup (Error! Reference source not found.). Although the 

network contention does not change in this experiment, the host-to-guest adaptation still 

enables TerraFly to adapt its JCQ based on the knowledge of its network bandwidth 

availability and workload intensity.  

Error! Reference source not found. compares the performance of TerraFly using 

three different JCQ settings shown in Error! Reference source not found.. Similar to the 

previous experiment, the result shows that the dynamic JCQ setting adapted by host-to-

guest optimization outperforms the static JCQ settings in terms of imagery quality and 

response time of the map requests. Using a static high JCQ is not able to meet the response 

time target when the workload intensity be-comes high; the scheme with a static low JCQ 

cannot provide good quality images even when there is abundant network bandwidth to be 

used. In contrast, the host-to-guest JCQ adaptation approach always meets the response 

time target and delivers an average improvement of 26.3% in imagery quality (vs. a static 

JCQ of 30). 

5.4.4. Combining both Guest-to-Host and Host-to-Guest Optimizations 

The last experiment further demonstrates the effective-ness of the cross-layer 

optimization by combining guest-to-host workload characterization and host-to-guest 

database tuning for an OLAP-like database work-load. 

An interesting workload is constructed by mixing multiple copies of Q1, Q4, Q6, and 

Q14 from the TPC-H queries. To make these queries more diverse in resource usage 
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patterns, distinct query copies are derived from Q4, Q6, and Q14 by modifying the 

condition in the where cause of the original query statements. Each copy touches a different 

section of the involved tables and the data accessed by different copies is evenly distributed 

within the range of a table. In this way, the intensity in I/O can be easily varied by changing 

the total number of these copies, while the CPU intensity is varied by changing the number 

of copies of original Q1. The experiment is performed in two phases. In Phase 1, the 

workload intensity is fixed by running 18 copies of queries in total but the composition is 

varied by changing the percentage of Q1’s copies from 17% then to 50% and finally to 

83%. In Phase 2, an I/O cap from 3000 to 1000KB/s is set to the VM to simulate different 

levels of I/O contention from other VMs while the workload is kept constant with 83% of 

Q1. 

Using the cross-layer optimization, during Phase 1, the VM’s resource demands are 

modeled using the workload characterization result, [Request rate, Percentage of ClusterI], 

as the input (Q1 is a CPU-intensive query classified to Cluster I while the others are I/O 

 

Figure 5-26 Performance of a TPC-H workload with both guest-to-host and host-to-
guest optimizations 
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intensive and classified to other clusters). When the experiment transits to Phase 2 and I/O 

contention is introduced into the system, the cross-layer optimization approach feeds the 

I/O pressure back to the guest layer by tuning the database parameters according to the re-

source availability. In comparison, the experiment is repeated with fuzzy-modeling-based 

resource allocation but without cross-layer optimization. In this case, during Phase 1, only 

the workload intensity is used to create the fuzzy model; during Phase 2, the database 

configuration is not adapted and kept static as in Phase 1. 

Error! Reference source not found. compares the database’s performance under 

fuzzy-modeling-based resource management with cross-layer optimization (Cross-layer 

Optimization) and without it (No Optimization) versus the ideal performance under peak-

load-based resource allocation (Peak-load-based). The result shows that in Phase 1, the 

performance from using cross-layer optimization closely follows the one under peak-load-

based allocation. It is as much as seven times better than the scheme without cross-layer 

optimization. In Phase 2, both approaches suffer from the reduced I/O bandwidth. 

However, the cross-layer optimization still achieves about 17% performance improvement 

than the scheme without cross-layer optimization. The host-to-guest feedback enables the 

database query optimizer to switch from a sequential-scan-preferred plan to an random-

scan preferred plan by tuning the ratio of seq vs. rand from the original 1:4 ratio to 1:1 as 

the I/O cap decreases from 3MB/s to 1MB/s. This adaptation improves the performance 

significantly because the random-scan-preferred plan uses indexes which require much less 

I/O bandwidth than the sequential-scan-preferred one.    
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5.5. Summary 

This chapter presents a new cross-host-guest optimization approach based on the 

existing fuzzy modeling based resource management by enabling the communication 

between VM host- and guest-layer schedulers to optimize the resource allocation and 

application performance. The host-layer scheduler exploits guest-layer application-specific 

information to characterize VM workload and model its resource demand. The guest-layer 

scheduler uses the host-layer feedback to understand the changing resource availability and 

adapt its configuration accordingly. As case studies, the proposed approach is applied to 

virtualized databases and map services which have challenging dynamic, complex resource 

demands and sophisticated configurations. The results demonstrate that the cross-layer 

optimization approach significantly outperforms the application-unaware one which treats 

VMs as black boxes. It can efficiently allocate both CPU and I/O resources to VMs serving 

workloads with dynamically changing intensity and composition and improve the 

applications’ performance when under resource pressure.  

  

 

 

 

   



130 
 

6. CONCLUSION AND FUTURE WORK 

6.1. Conclusion 

In this dissertation, a fuzzy-modeling-based autonomic resource management system is 

first proposed to automatically allocate resources to VMs based on their QoS targets. The 

experimental results demonstrate this approach can accurately estimate a VM’s resource 

needs for dynamic and complex workloads based on its desired QoS while improving 

resource utilization. 

However, this modeling-based approach relies on a predefined backup policy to deal 

with situations where the VM’s resource demand is misestimated due to dynamic changes 

in the VM’s resource usage behaviors. To eliminate the need for such a supplementary 

strategy, we proposed another new approach which combines fuzzy modeling with 

predictive resource control. This approach allows a VM’s resource allocation to be directly 

adjusted based on the application’s performance feedback and the QoS target. It employs 

multi-input-multi-output fuzzy modeling which can simultaneously model the resource 

usages of multiple VMs and at the same time capture the interference between them. It also 

uses live VM migration to further optimize resource usages across hosts.  A prototype of 

the proposed approach is evaluated on a virtualized system using realistic workloads. The 

experimental results show that it is able to not only automatically track the single QoS target 

and but also optimize high-level service objective by quickly adapting to changes in the 

system. The results also show that the approach can effectively manage over one hundred 

concurrent VMs and optimize their performance across multiple hosts. 
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As an extension to the base framework in which four major modules work together to 

form a closed control loop, a cross-layer optimization is proposed to enable the 

communication between VM host- and guest-layer schedulers and allow them to 

collaboratively optimize the resource allocation and application performance. As 

challenging case studies, these proposed approaches are applied to the fuzzy-modeling-

based resources management system for virtualized databases and map service. 

Experiments based on typical database benchmarks, TPC-H and RUBiS, and a map service 

application, TerraFly, show the cross-layer optimization approach can accurately allocate 

resource for dynamic and complex workloads and effectively adapt guest-layer’s 

configurations according to its resource allocation, significantly outperforming the 

application-unaware approaches that treat VMs as black boxes.  

6.2. Future Work 

In this dissertation, the cross-layer optimization is integrated to one of our resource 

management frameworks, the fuzzy-modeling-based one. In our future work, we will 

consider applying it to the second solution, the FMPC-based management system to 

combine the benefits of host-guest collaboration with predictive control as illustrated in 

Error! Reference source not found..  

From one aspect, the existing model in the FMPC-based system is a performance 

model, where only the measurements of workload performance are served as the inputs. 

To enable the guest-to-host optimization, we will consider to involve the workload 

characteristics from the application-level knowledge in the model to improve the modeling 
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accuracy. Then a general MIMO model in the FMPC system would be rewritten into the 

following format: 

Φ , , 1  

Where w(t) represents the workload which is characterized based on guest-level 

knowledge as we described in Chapter 5.2.2. It will help host-level scheduler adapts to the 

dynamics in workloads proactively. However, it is also challenging as the dimension of the 

model increases, and the complexity of training and updating the model may increase 

considerably.   

From another aspect, a host-to-guest layer optimization will be added based on the 

existing framework of FMPC. There are also new challenges that need to be well addressed. 

For example, how would the host-to-guest layer optimization affect the modeling part? 

Since the adaptation of application will further tune guest-level’s application based on the 

 
Figure 6-1 Architecture of cross-layer optimization on fuzzy-modeling-based resource 

management system 
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allocation, this may cause more discrepancy between the actual performance measurements 

and the prediction from the model, and it is likely that the actual performance would be 

better than the predicted one. Either the model needs to be retrained after performance 

improvement observed after each adaptation or the mapping between the tunable parameters 

and resources availability needs to be considered in the optimizer to produce the 

performance prediction to reflect actual performance after tuning. We also need to take care 

the system stability issue of adapting the application and its performance model.  

The awareness between virtualization software and virtualized application breaks the 

transparency offered by traditional full virtualization, but we advocate that this tradeoff is 

necessary for business- and mission-critical applications to achieve their desired QoS on 

virtualized systems. The benefit of this tradeoff is demonstrated by our initial results 

reported in this dissertation. The underlying argument is the same as that drives the success 

of paravirtualization [2] which sacrifices complete transparency for lighter-weight and 

more efficient virtualization. Although not every virtualized application is capable of 

adapting its behavior according to changing resource availability, we believe it will become 

a necessity for critical applications as virtualization becomes pervasive. In our future work, 

we will study how to create a concise and generic interface for cross-layer optimization 

that can support diverse guest operating systems and applications. 
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