378 research outputs found

    Optimal linear data fusion for systems with missing measurements

    Full text link
    In this paper, we provide the optimal data fusion filter for linear systems suffering from possible missing measurements. The noise covariance in the observation process is allowed to be singular which requires the use of generalized inverse. The data fusion process is made on the raw data provided by two sensors&nbsp; observing the same entity. Each of the sensors is losing the measurements in its own data loss rate. The data fusion filter is provided in a recursive form for ease of implementation in real-world applications.<br /

    Robust filtering for uncertain discrete-time systems with uncertain noise covariance and uncertain observations

    Full text link
    The use of Kalman filtering is very common in state estimation problems. The problem with Kalman filters is that they require full prior knowledge about the system modeling. It is also assumed that all the observations are fully received. In real applications, the previous assumptions are not true all the time. It is hard to obtain the exact system model and the observations may be lost due to communication problems. In this paper, we consider the design of a robust Kalman filter for systems subject to uncertainties in the state and white noise covariances. The systems under consideration suffer from random interruptions in the measurements process. An upper bound for the estimation error covariance is proposed. The proposed upper bound is further minimized by selection of optimal filter parameters. Simulation example shows the effectiveness of the proposed filter.<br /

    Learned Vertex Descent: A New Direction for 3D Human Model Fitting

    Get PDF
    We propose a novel optimization-based paradigm for 3D human model fitting on images and scans. In contrast to existing approaches that directly regress the parameters of a low-dimensional statistical body model (e.g. SMPL) from input images, we train an ensemble of per-vertex neural fields network. The network predicts, in a distributed manner, the vertex descent direction towards the ground truth, based on neural features extracted at the current vertex projection. At inference, we employ this network, dubbed LVD, within a gradient-descent optimization pipeline until its convergence, which typically occurs in a fraction of a second even when initializing all vertices into a single point. An exhaustive evaluation demonstrates that our approach is able to capture the underlying body of clothed people with very different body shapes, achieving a significant improvement compared to state-of-the-art. LVD is also applicable to 3D model fitting of humans and hands, for which we show a significant improvement to the SOTA with a much simpler and faster method.Comment: Project page: https://www.iri.upc.edu/people/ecorona/lvd

    Optimal Input Design for Active Parameter Identification of Dynamic Nonlinear Systems

    Get PDF
    There are many important aspects to be considered while designing optimal excitation signal for system identification experiment in control applications. Active parameter identification is an important issue in system and control theory. In this dissertation, the problem of optimal input design for active parameter identification of dynamic nonlinear system is addressed. Real life physical systems are identified by excitation with a suitable input signal and observing the resulting output behavior of the system. It is important to choose the input signal intelligently in the sense that it is responsible to determine the accuracy and nature of the unknown system characteristics. This leads to a spurred interest in designing such an optimal excitation signals that can yield maximal information from the identification experiment. The information obtained from parameter identification is usually not accurate due to incomplete knowledge of the system, disturbance as exogenous inputs and noisy measurements. Hence, the input spectrum is designed in such a way that it can improve the system performance and shape the quality of obtained information. A welldesigned input signal can maximize the amount of information and reduce the experimental cost and time. The input signal is usually given some a-priori characteristics (knowledge on the pdf) so that \u201cexcitation\u201d of the system is guaranteed. In this thesis, a closed-loop method is investigated which is able to improve the parameter identification on the basis of the actual system\u2019s behavior. The effectiveness of the proposed algorithm is presented by the experimental results which corresponds to the perfect identification of the unknown parameter vector. The major technical contribution of this work is to propose an optimal feedback input design method for active parameter identification of dynamic nonlinear systems. The proposed framework can design such optimal excitation signals, considering the information from the identified parameters, that can maximize the amount of information from the identified parameters, guarantee to meet the specified control performance and minimize some cost function of the error covariance matrix of the identified parameters. The problem is formulated in a receding horizon framework where extended Kalman filter is used for system identification and the optimal input is designed in a nonlinear model predictive control framework. In order to carry out a comparison study, also Unscented Kalman Filter and Gaussian Sum Filter are used for the active parameter identification of dynamic nonlinear system. Towards this end, a suitable optimality criterion related to the unknown parameters is proposed and motivated as an information measure. The aim of the optimal input design is to yield maximal information from the unknown system by minimizing the cost related to the unknown parameters while maintaining some process performance and satisfying the possible constraints. Simulations are performed to show the effectiveness of the proposed algorithm
    corecore