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ABSTRACT

There are many important aspects to be considered while designing optimal exci-
tation signal for system identification experiment in control applications. Active
parameter identification is an important issue in system and control theory. In
this dissertation, the problem of optimal input design for active parameter identi-
fication of dynamic nonlinear system is addressed.

Real life physical systems are identified by excitation with a suitable input sig-
nal and observing the resulting output behavior of the system. It is important
to choose the input signal intelligently in the sense that it is responsible to de-
termine the accuracy and nature of the unknown system characteristics. This
leads to a spurred interest in designing such an optimal excitation signals that can
yield maximal information from the identification experiment. The information
obtained from parameter identification is usually not accurate due to incomplete
knowledge of the system, disturbance as exogenous inputs and noisy measure-
ments. Hence, the input spectrum is designed in such a way that it can improve
the system performance and shape the quality of obtained information. A well-
designed input signal can maximize the amount of information and reduce the
experimental cost and time. The input signal is usually given some a-priori char-
acteristics (knowledge on the pdf) so that “excitation” of the system is guaranteed.
In this thesis, a closed-loop method is investigated which is able to improve the
parameter identification on the basis of the actual system’s behavior. The effec-
tiveness of the proposed algorithm is presented by the experimental results which
corresponds to the perfect identification of the unknown parameter vector.

The major technical contribution of this work is to propose an optimal feedback
input design method for active parameter identification of dynamic nonlinear sys-
tems. The proposed framework can design such optimal excitation signals, con-
sidering the information from the identified parameters, that can maximize the
amount of information from the identified parameters, guarantee to meet the spec-
ified control performance and minimize some cost function of the error covariance
matrix of the identified parameters. The problem is formulated in a receding
horizon framework where extended Kalman filter is used for system identification
and the optimal input is designed in a nonlinear model predictive control frame-
work. In order to carry out a comparison study, also Unscented Kalman Filter and
Gaussian Sum Filter are used for the active parameter identification of dynamic
nonlinear system. Towards this end, a suitable optimality criterion related to the
unknown parameters is proposed and motivated as an information measure. The
aim of the optimal input design is to yield maximal information from the unknown
system by minimizing the cost related to the unknown parameters while maintain-
ing some process performance and satisfying the possible constraints. Simulations
are performed to show the effectiveness of the proposed algorithm.
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Chapter 1

INTRODUCTION

“To call in the statistician after the experiment is done may be no more

than asking him to perform a post-mortem examination: he may be able

to say what the experiment died of.”

– Ronald Fisher

Most of the real life physical problems are characterized by their models in order

to have better understanding and visualization. Models are divided in different

types and classes, depending on the aim and field of study. The models are meant

to represent some physical process or phenomena objectively. Nevertheless, they

are just an approximation (or simplification) of some real physical system which

they are intended to represent. A good model has all the useful information about

the system and abstracts away the amount of information which is of little or no

importance to the studied phenomena. The focus of this work is to develop such

an algorithm that can maximize the amount of information from the unknown or

uncertain system and achieve some desired control performance while respecting

the input and state constraints.

The problem of optimal input design (OID) is to generate the external excitation

signals in such a way that it can yield maximum information from the unknown

system through the identification strategy. The nature of the exogenous input
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signal determines the quality and type of the model obtained from the system

identification experiment. These excitations are usually manipulated by means of

model builder which helps to acquire as much information as possible. In this the-

sis, a combined framework of OID for active parameter identification of nonlinear

dynamic system is addressed. The objective is to extract maximal information

about the unknown or uncertain parameters of the system. The proposed formu-

lation allows the treatment of several important problems such as active identifi-

cation of the parameter, classical optimal control problem and a trade-off between

the two cases by acting on the parameter of interest. The formulation presented

in this dissertation is based on the theoretical concepts of System Identification

and Estimation Theory, Optimal Control Theory, Information Theory and Opti-

mal Experiment Design. Hence, in this first chapter, we have discussed a brief

introduction of these topics.

The topic of OID for experiment design is a widely researched topic among the

control and estimation community. However, the topic of OID for active parameter

identification, addressed in this work, has not been yet faced directly. Some simi-

lar concepts are discussed in literature like optimal experiment design, where the

objective is to obtain the maximum information from the system. These problems

arise in Chemistry, Biology, Physics, etc., where complex and expensive experi-

ments are required. The related theory serves as a source of inspiration but is

not directly related to our proposed field of study. In fact, the proposed theory is

for the unknown/uncertain dynamic systems while the optimal experiment design

deals with static systems.

After the work of Shannon [3], the field of Information Theory has grown con-

siderably. The work done by Shannon was motivated by the problem he faced

in Communication Theory but the field of Information Theory cannot be treated

as a subset of Communication Theory. The field has contributed to Thermody-

namics (Statistical Physics), Kolmogorov complexity and algorithmic complexity

(Computer Science) and Occam’s Razor (Statistical Inference). It is interesting to

link the concepts of Information Theory with the ideas of Control Theory. Some
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interesting results are presented in [4,5] but yet, the link between the two fields is

not well established.

In this dissertation, we have proposed a new formulation for the design of op-

timal excitation signals for active parameter identification of nonlinear dynamic

systems. By active parameter identification, we mean that the problem is finding

such an optimal feedback control law that can maximize the amount of informa-

tion on the unknown system parameters while the system evolves using available

information online. The problem is formulated as a stochastic optimal control

problem in Model Predictive Control (MPC) framework, where a suitable mea-

sure of uncertainty is added as the information cost on the unknown parameters.

The introduction of the proposed work and problem formulation is given in Chap-

ter 1 and a through discussion is carried in subsequent chapters.

1.1 Motivating Examples

In order to introduce the reader with the key concepts of the subject and to discuss

the wide class of problems that can be faced with proposed framework, we have

discussed some of those examples here.

• Map Building of Unknown Environment: Consider an autonomous ve-

hicle that must explore an unknown or partially known environment. In or-

der to build a map of the unknown building, it is obvious for the autonomous

vehicle to explore the unknown environment. To build an effective map of

the environment, it is necessary to have a feedback control law that will help

the vehicle to maneuver and perform the necessary tasks of exploration.

• Telecommunication Network Exploration: The problem of exploring a

telecommunication network where some nodes or links are broken, could be

an interesting problem to investigate. The proposed algorithm can build a

map of the network by means of “intelligent” tokens and communicate about

the broken links.
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• Estimation of Target Position: The problem of estimating a target posi-

tion from noisy sensor measurements which is mounted on a board (moving

observer) could be an interesting application for proposed framework. This

example is a typical case where the control technique affects the observabil-

ity of the plant. Due to the presence of nonlinearity, the estimation problem

makes the observer maneuvers fundamental in order to have a perfect esti-

mate of the target position.

• Parameter Identification in Robotic Applications: In order to identify

the parameters of interest in some robotic applications like wheeled robot or

robotic arm, it is not desirable to generate random excitation signals (motor

torques). This may lead to poor controllability and stability of the system.

Definitely, the choice of interest is to generate such control or excitation

signals that can maximize the information from the system and respect the

physical constraints on the system.

• Bioengineering and Systems Biology: In last few years, the use of

control strategies for the identification of different diseases and health issues

has seen an exponential increase. The use of mechanistic models in systems

biology is a well researched topic where the identification and control of

different system models consisting of biochemical pathways of interest in

oncology are studied. However, due to unavailability of data and state of

the art methodologies, the understanding of the intrinsic characteristics of

complex pathologies like cancer is limited. Information retrieval in system

biology related experiments is still a major area of interest for the researchers.

The fundamental objective of all the examples discussed above is to maximize

the information about the unknown parameters from the system. Although every

single example has its own particularity, yet a need of a general framework to deal

with these broad class of problems is required. In this work, we have proposed

such a framework which will use a suitable measure of uncertainty in the cost to be

minimized and maximize the amount of information while respecting the physical

constraints and bounds on the system.
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1.2 Problem Formulation

It is difficult for a defined model to exactly capture all the aspects of a physical

system. Also, it is not desirable to capture all the information/aspects of the

system as it may lead to a highly complex models. The desire is to capture

only the relevant information which depends on the intended use of the model

application.

In this thesis, a novel formulation is presented for OID for nonlinear dynamic sys-

tems. In particular, the problem of active parameter identification is addressed in

a receding horizon framework using some uncertainty measure related to the iden-

tified parameters as an information cost. The quality of the obtained information

highly depends on the type of the identification experiment and the excitation

properties of the applied input signal. For the system identification of nonlinear

dynamic systems, Extended Kalman Filter (EKF) has been used which provides

the information about the unknown states, parameters and the covariance ma-

trix related to the unknown parameters. A-optimality criterion is defined as the

information measure on the unknown parameter vector, which tend to minimize

the trace of the covariance matrix. The excitation signals are generated using the

MPC strategy, where a cost function is defined consisting of a process cost and

information cost on the parameters. The proposed framework has the following

objectives:

• The cost related to the identification of the parameter should be as small as

possible which results in better identification of the parameter.

• The performance of the identified model should be very good.

• The constraints and bounds on the physical plant should be respected.

The general cost function for the optimization problem is given as:
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minimize
input

cost of experiment

subject to Performance specifications (1.1 )

System constraints

The cost function defined above is for general optimization problem solved in OID

framework.

1.3 Thesis Structure

This section gives an overview and outline of the different chapters of the thesis.

The chapters are given as follows:

• Chapter 2: In Chapter 2, a detailed description on the theoretical back-

ground of nonlinear system identification is presented. Different system iden-

tification and system estimation strategies are discussed. The motivation for

the use of EKF as an identification strategy is presented. Some related esti-

mation strategies like Unscented Kalman Filter (UKF), Particle Filters (PF)

and Gaussian Sum Filter (GSF) are also discussed. A detailed background

for the OID of nonlinear dynamic system is studied with the most relevant

literature. The applications of OID in different fields like industrial process

and system biology are presented. In the end, a detailed description of MPC

framework for the OID is given.

• Chapter 3: Chapter 3 has focused on the fundamental of the OID for

active parameter identification. It begins with a formal system description

and then a detailed discussion is carried on the choice of the optimality

criteria for the information cost. Different optimality criteria are discussed

and a motivation for the use of A-optimality criterion (information-based

criterion) is presented. To identify the information, a detailed description is

given on EKF, UKF and GSF which are used to carry a comparison study
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on the identification of unknown parameter vector. In the end, the use of

MPC for the active parameter identification and its problem formulation in

MPC framework is presented.

• Chapter 4: In Chapter 4, the complete framework of OID for active param-

eter identification is presented. First, a complete description of the nonlinear

discrete-time dynamic system is presented where the initial preliminaries and

problem formulation is discussed. A detailed description on the use of system

identification strategies (EKF, UKF or GSF), discussed in previous chapters

is provided. In order to get the best estimates, A-optimality criterion is

used and its detailed description is presented. In the end, the combined

EKF/NMPC strategy is presented in the receding horizon framework.

• Chapter 5: In order to validate the proposed framework, a thorough study

is carried with some abstract and realistic numerical examples. To get a

deeper insight into the proposed formulation, it is important to implement

it on some examples which can give clear idea on the effectiveness of the

proposed work. A simple “toy model” is used as an abstract example which

is considered as a stable system. Simulations are performed for different

scenarios with different initial conditions and the results show the superiority

of the proposed framework. In order to see the effectiveness of the proposed

framework on a more realistic example, it is implemented on a 2-DOF and 3-

DOF model of two-wheeled mobile robot model. Simulations are performed

for different scenarios and a comparison study is carried out on the basis

of the identified information on the unknown parameters. The simulation

results shows that the proposed strategy performs exceptionally well in all

cases and gives perfect identification of the parameter while respecting the

physical constraints on the system.

• Chapter 6: In the last chapter, the thesis is concluded with the summary of

major proposed contributions and discussion of the obtained results. Some

recommendations and suggestions for the further future research are also

presented.
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Chapter 2

STATE OF THE ART

“Science may be described as the art of systematic over-simplification —

the art of discerning what we may with advantage omit.”

– Karl Popper

For the system identification of real physical systems, it is excited by a suitable

excitation signal and observing the input and output behavior of the system. The

choice of input signal highly influences the quality and accuracy of the information

obtained on the unknown system. In recent decades, extensive work has been done

to design such optimal input signals that can yield maximal information on the

system. The accuracy of the information obtained from the system identification

experiment is usually poor (due to incomplete knowledge of the system, external

disturbances and noisy measurements, etc,). Hence, a suitable input spectrum

has to be designed that can shape the quality of the information and improve the

system performance. A well-designed input signal has the ability to maximize the

amount of information on the unknown parameters of the system and also reduced

the cost and time of the experiment. The input signals are designed on the a-priori

knowledge of the system so it can “excite” the system well. In this chapter, we

have presented a state of the art literature related to OID framework for system

identification of nonlinear dynamic systems. Some useful literature is presented
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for active parameter identification and how to formulate the problem in a receding

horizon framework.

This chapter briefly summarizes the basic concepts, preliminaries of nonlinear

system identification using the OID and some useful reading suggestions on the

topic from the literature which will be helpful for the material developed in the

succeeding chapters of the thesis. Among good references for OID framework for

system identification are [6–8].

2.1 Nonlinear System Identification

To understand the behavior of systems (either natural or man-made), modern

science and technology is highly dependent on the mathematical models. A math-

ematical model can be roughly defined as a mathematical law that links the causes

(system inputs) to the effects (system outputs). It is necessary to perfectly model

a system mathematically and its application range from simulation and prediction

to control and diagnosis of heterogeneous fields. To build a mathematical model

of uncertain or unknown phenomena, system identification is a widely used ap-

proach. It is used to identify the model based on the observed uncertain or noisy

measurements from the unknown system.

The idea of system identification is defined explicitly by many researchers. In [9],

it is defined as: “system identification is the determination on the basis of ob-

servations of input and output of a system within a specified class of systems to

which the system under test is equivalent”. Due to presence of noise and uncer-

tainty, it is highly impossible to identify a model that matches the actual physical

plant. Hence, only an approximation of the practical plant can be obtained from

the identification. The description given in [10] explained that the system iden-

tification tries to built a model that can describe the essential characteristics of

a unknown system and the resulting model can be expressed in a useful form.

The definition given by Ljung [11] is rather interesting one: “The identification

procedure is based on three entities: the data, the set of models, and the criterion.
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Figure 2.1: Elements of System Identification

Identification, then, is to select the model in the model set that describes the data

best, according to the criterion.”

The definition of Ljung has divided the system identification procedure into three

main parts: data, model and criterion, see Fig. 2.1. The performance of the iden-

tification algorithm, its accuracy to identify the unknown parameters, robustness,

convergence rate and computational complexity is directly dependent on these

three elements [12]. The choice and design of these three elements is of critical

importance in the system identification.

The general definition of system identification is given as:

Definition 2.1. System identification describes a way to construct the mathe-

matical model of a uncertain dynamic system from the observed data obtained

from inputs and outputs of the system. The input signal is designed in a such a

way that it can maximzie the amount of the information on the unknown system

parameters.

It is a well-studied field which provides the necessary tools to construct the mathe-

matical models of the unknown or uncertain systems which are helpful to describe

the behavior of the dynamic system. The different applications of system identifi-

cation can be found in numerous engineering fields. In general, the primary task of

any system identification method is to choose a model class which is parametrized

by unknown or uncertain parameter vector. The objective is then to identify the
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unknown parameter vector as efficiently as possible so that the selected model can

describe the true system dynamics.

The choice of a suitable model is a crucial step in system identification which gives

a trade-off between complexity and the quality of the model. During the past few

decades, numerous model structures were discussed for both linear and nonlin-

ear systems. For linear systems, finite impulse response (FIR), auto-regressive

(AR) and auto-regressive moving average (ARMA) models are very commonly

used. While for nonlinear systems, nonlinear auto-regressive, radial basis func-

tion (RBF) and multilayer perceptron (MLP) are widely used model types. It

is possible to have some prior knowledge of the model structure or may be the

the model structure is confined to a particular tractable structure to have a good

approximation of the system. Different model selection criteria are discussed in

literature such as minimum description length (MDL) [13, 14], cross-validation

criterion (CVC) [15], Bayesian information criterion (BIC) [16] and Akaike’s in-

formation criterion (AIC) [17].

The choice of data selection in terms of measured variables and the design of

optimal input for the system identification is of critical interest. For an experiment

design, the key objective is to adjust the experimental conditions in such a way

that maximal information can be obtained from the unknown system. In literature,

different information matrices are used as an optimality criterion. The choice of

input signal can significantly improve the quality of the identified information [18].

The third element to discuss is the equivalent criterion which has also major im-

portance in system identification. The criterion helps to improve the quality of

the information by measuring the similarity (or difference) between the identified

model and the actual system. There are variety of optimality criteria which are

used for system identification and a detailed discussion is carried out in Chap-

ter 3. The choice of different criteria may lead to different type of estimates. The

aim of OID is to find such a control law that can minimize (or maximize) the

approximation criterion in order to maximize (or minimize) the information on

the system. The optimality criterion serves as the measure of the accuracy and
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has a significant influence on the convergence behavior and optimal solution of the

system. The next section will elaborate a detailed history of system identification.

2.1.1 History

The earliest work on system identification is reported back in the end of 18th and

beginning of 19th century by statistics and time series communities. In [19], a break

through work was proposed in which the method of least square is described. In

the start of 20th century, the development of statistical theory of regression and

correlation analysis was also a major milestone achieved [20]. Some very good

references for earliest history of system identification and time series analysis can

be found in [21–23].

During the early 20th century, two major developments took place: the theory of

stationary process was proposed which serves as the main model class for time

series and the first systematic approach was presented for modern system iden-

tification as Cowles Commission Econometrics. During almost the same time

period, the ergodic theory for strict stationary process was proposed in [24]. The

asymptotic characteristics of ordinary least square estimators were derived in [25]

while in [26], stochastic behavior of macro models were presented. In [27], for the

linear ARX model, a complete theory of system identification is presented. The

identifiably analysis along with the asymptotic properties and Gaussian maximum

likelihood estimation was also discussed. During the mid of 19th century, different

strategies were proposed for non-parametric estimation of spectral densities. The

first smoothed spectral estimator was proposed in [28]. After the development

of non-parametric spectral estimation strategies, the estimation strategies for AR

and ARMA models gained lot of attention.

The first signs of system identification in the field of engineering was found in early

1960’s. The work of R. E. Kalman on realization and parametrization [29,30] has

given birth to model based control era which later proved to be the foundation

of pole placement and LQG control. These techniques were only applicable to

the systems where the information on the model is perfectly known which is not

true in all cases. The problem is addressed by the two papers which have given
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birth to subspace identification method [31] and prediction error identification [32].

The first correct proof of consistency of maximum likelihood estimation (MLE)

for single-input single-output (SISO) system was presented in [33] which leads

to asymptotic normality of the MLE’s in different other papers [34, 35]. The

concepts of system identification for SISO as well as MIMO systems reached a

level of maturity by the end of 1980’s. Several books were written on the main-

stream identification of linear systems [7,36–38] and presented the idea of system

identification as a design problem. A well described work on the topic of frequency

domain techniques is presented in [39] while the subspace identification strategies

were covered in [40].

2.1.1.1 Identification Strategies: Overview

Traditionally, for system identification or state estimation, least square (LS) meth-

ods [41], minimum mean square error (MMSE) method [42] and the maximum

likelihood (ML) methods [43, 44] are commonly used. It was first introduced by

Carl Friedrich Gauss in 1795 and defined as a criterion which tends to minimize

the sum of square errors. The error is defined as the difference between the ac-

tual value and the observed value of the model which corresponds to maximum

likelihood criterion if the error has an Gaussian distribution. Due to its straight

forward implementation steps, mathematical tractability and efficiency in terms

of identification, the LS method is widely used strategy to solve the problems of

estimation, identification and regression. The LS methods gives a closed form

solution to a linear problem. In [45], a regularized version of LS method has been

introduced. Different identification criteria, i.e. recursive least square (RLS) and

its types [7], are developed on the basis of LS method. It is also common in sig-

nal processing and statistical community to use MMSE method as a measure of

quality of estimation which tends to minimize the mean square error (MSE) of

the observed value. It is used as a stochastic approximation method in system

identification. These methods are used to find the extrema of a those functions,

of which it is not possible to compute it directly, by noisy observations. A variant

of MMSE method is famous least mean square (LMS) method which is based on

the gradient decent algorithm [46–48]. In case of ML methods which provides a
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unified criterion for estimation, the model parameters are selected in such way

a that can maximize the likelihood function. The method possess the character-

istics as asymptotic normality, consistency and efficiency in terms of parameter

identification.

The LS, MMSE and ML criteria work really well in most of the real life prob-

lems and still playing a fundamental part in system identification. However, the

applicability of these criteria have some limitations. For example, only the second-

order modes of the data are captured by LS and MMSE, which might result in

poor approximation in case of nonlinear and non-Gaussian distribution. Similarly,

a-prior knowledge of conditional distribution is required by ML criterion, which is

not always available in practical problems. Also, in some complicated nonlinear

problems, ML methods are not suitable to use. Hence, a need of criterion, which

can identify beyond the second-order modes is a attractive problem in system

identification community.

To address the above mentioned problems and discuss the optimal criterion for

identification, non-MMSE criteria were introduced in [49]. The article showed

that the non-MMSE criterion produces the same prediction results as produced by

linear MMSE. The work was extended and several related articles were published

[50–52]. For recursive parameter identification, the idea of general error criterion

was proposed in [53]. An optimal criterion was proposed which tends to minimize

the error covariance matrix of the parameter estimate. Another approach to select

the optimality criteria from least-mean fourth family was proposed in [54, 55],

where a cost related to the moments of the interfering noise was minimized. The

use of calculus of variations to determine the optimal criterion among a large

number of general optimality criteria was proposed in [56]. A method to optimize

the derivative of the error criterion by optimizing the performance in steady state

was proposed in [57]. In [58], least mean p-power (LMP) method was proposed.

Several other non-MSE criteria discussed in literature are: M -estimation method

[59], risk-sensitive method [60, 61], mixed norm method [62–64] and high-order

cumulant method [65–67].
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2.1.1.2 Estimation Strategies: Overview

Most of the real life physical systems have been represented with some mathemat-

ical models. These mathematical models, categorized in the two groups: deter-

ministic and stochastic. The models are useful to effectively understand the past

behavior of the system and predict the future behavior up to some extent. It is

easy to represent and work with deterministic models. The shortcoming of this

kind of system is that it does not provide enough information which gives rise to

the use of stochastic models. This can be stated as:

• Mathematical representation of a physical system is never perfect. The mod-

els shows only the dominant modes of the physical systems.

• Due to the presence of uncertainty and approximation of the plant parame-

ters, the accuracy of the model is highly effected.

• It is not possible to deterministically model the effects of exogenous distur-

bances.

• The measurement noise is always present in the information provided by the

sensors.

The earliest work of R. A. Fisher on the ML estimation method is the major build-

ing block of classical estimation theory. Different parameter estimation strategies

have been discussed in literature which differ due to several assumptions made

regarding the prior probability and the optimality criterion. For example, lin-

ear regression method and the least square method assume that the optimality

criterion is a scalar quantity while the ML method assume the maximization of

the probability density function. Another interesting and widely used estimation

strategy is Kalman filter and its variants. It accommodates both discrete and con-

tinuous time systems, especially for linear systems, where KF gives the optimal

solution. As this work focuses only on discrete time systems, we will only discuss

the discrete form of KF.
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2.1.1.3 Kalman Filter and it’s Variants

For the parameter identification and state estimation of linear systems, KF is the

optimal recursive algorithm. The ease of implementation due to the recursive

nature of the algorithm and the applicability in high dimensional state spaces are

the key benefits of implementing the KF. It is most widely used method for state

estimation in Control Theory as it produces the optimal estimate of the unknown

or uncertain system in a sense that the sum of the estimation error is minimized.

The application of KF to different physical systems is addressed in [68–72].

The nonlinear version of KF is known as extended Kalman filter in Estimation

Theory. The filter tries to linearize about the current value of the estimated

mean and covariance. In control theory, EKF has been used as a sub-optimal

state estimator for uncertain nonlinear systems [73–76]. Its application for the

parameter identification was first proposed in [77], where the unknown parameter

vector θ is treated in the state vector with other states.

For the systems with highly nonlinear dynamics, EKF does not perform up to the

mark because a linearized model is used to propagate the covariance matrix of

the system. In the case of complex nonlinear systems, it involves costly computa-

tion of the Jacobin matrices which leads to slow convergence and implementation

difficulties. Also, if the sampling time is not sufficiently small, this linearization

leads to filter instability. In order to address the limitations possessed by EKF

in terms of linearization, unscented transformation (UT) is used to estimate the

mean and covariance matrix instead of linearization by the Jacobian matrices. The

UKF addresses the assumption that it is easy to estimate a Gaussian distribution

rather than to approximate an arbitrary complex nonlinear system. In Control

community, UKF emerges as a strong and powerful nonlinear estimation method

and proved its superiority over the EKF in many applications [78–80].

Lot of work has been carried out on the application of Kalman filters [81, 82]. In

[81], a predictive likelihood approach has been used for estimating the noise filters

for linear, EKF and UKF. In [82], an UKF is demonstrated. The UKF is capable of

reconstructing the dynamics and estimating the unknown parameters of a neural
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mass model. A closed loop strategy has been demonstrated for modeling the

dynamics of the model. In [83], a dual extended Kalman filter (DEKF) technique

has been used for model based vehicle estimation. Two EKF are used in parallel

to estimate the state and the parameters separately. Some other problems using

EKF are presented in [84–87].

2.1.1.4 Particle Filter

For the case of linear systems with Gaussian noise, the KF is the optimal solution

for estimation. For nonlinear systems with Gaussian noise, KF can gives you good

results but the PF may give you better results. The main advantage of using

particle filter instead of KF is that for a higher dimensional system, these PF are

tractable while the KF is not. The other reason is that KF try to make the problem

tractable by solving a simpler model instead of a complex model and find an exact

solution by solving the simpler system. The problem with this kind of solution

is that it might be still computationally expensive to solve it or the simplified

model is not good enough to find an exact estimate. This problem is overcome by

the use of PF which uses the full complex model to find an approximate solution

of the system. The comparison of these two methods are carried out in various

papers [88–94] and the references therein. The principal benefit of particle filtering

is that they do not rely on any local linearization techniques or any crude functional

approximation. The price that must be paid for this behavior is computational:

these methods are computationally expensive.

Particle filter has been widely used in many real life applications. In [95], a com-

parison study has been carried out between EKF and PF for the state estimation

of an industrial robot. Online state estimation is also a key element in process

engineering. In [96], a PF based on sequential Monte-Carlo method has been

proposed for the process engineering. Some other research papers has also been

published on the state estimation of a dynamical system like [97,98].

Particle filters have been effectively used for the estimation of static parame-

ters [99]. An interesting application of particle filter for the parameter estimation
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in geophysics has been proposed in [100]. The paper describes the parameter iden-

tification of a pressure regulator with a nonlinear structure by sequential Bayes

estimation in the framework of data assimilation. A damping coefficient of feed-

back system in the pressure regulator that cannot be observed directly is estimated

using a particle filter and a nonlinear state space model. In process engineering,

online state and parameter estimation is a key component in the modeling of

batch processes. A kernel smoothing approach using the particle filter algorithm

has been introduced for the robust estimation of unknown and time-varying model

parameters [101]. Some interesting references on parameter estimation using par-

ticle filters are [102,103].

2.1.1.5 Gaussian Sum Filter

In order to address various factors which effects the performance of EKF and PF,

such as, conditional pdf of the system is non-vanishing, stationarity of the prob-

lem, the decay rate of the conditional pdf in state space, analytical structure of the

problem and effective dimensionality of the problem, an efficient and simple ap-

proach for general nonlinear filtering is GSF. The approach is a Gaussian mixture

approximation of state space pdf based on the Bayesian estimation [104–106].

The GSF tries to propagate the first two moments of the Gaussian component

using the linearized model of a nonlinear dynamic system and the new weights

are chosen as the prior weights which are updated accordingly using the Bayes

rule. Variety of literature is discussed on GSF in theoretical aspect [107,108]. The

application of GSF is presented, e.g. for target tracking [109–111], geosciences

[112], computer vision [113,114].

2.2 Optimal Input Design in Nonlinear System

Identification

Optimal input design for linear and nonlinear system identification has a long

tradition in Statistical and Control community. In this section, a detail discussion

on the design of optimal signals for nonlinear system identification is presented.
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2.2.1 Background

The results on the input design in statistical literature trace back to the beginning

of 20th century. The input signal is designed in such a way that the estimated

error in the identified parameters is minimized in the presence of some constraints.

In [115], a good literature review is presented on the input design in statistical

framework. The results presented about input design in statistics in used for

System Theory [116,117].

The Control community has recognized very early that accuracy of a model highly

depends on the input signal [118–120]. In order to judge the performance of the

control input, it seems logical to see the accuracy of the identified information

[121]. In 1970, OID for dynamic system has started to attract the attention of

the researchers [117,122]. In 1986, the model purpose is explicitly incorporated in

the OID framework by introducing a measure of performance degradation in the

estimate of transfer function [123]. In [124,125], the power of the excitation signal

is used as the cost of the identification experiment which is more commonly used

in application oriented input design. This idea was first originated in late 90’s

from the concept of plant-friendly input design for chemical process [126] which

is somewhat related to the idea of designing the control signal from the identified

information and achieving the desired control performance. Usually, the power of

the probing signal or the magnitude of the perturbation signal is minimized as a

cost for the identification experiment [124].

A common technique discussed in literature is to simultaneously identify and con-

trol the system which aims at increasing the control performance as the the knowl-

edge on the unknown system is gradually improved. Such a method is used in [127]

where the identification experiment and dual control strategy are used sequentially.

In [128], a separate identification experiment is proposed in open loop in order to

collect the data in the presence of already working control strategy. In [129,130],

the OID problem is presented as a receding horizon control problem in an MPC

framework. In [131], a similar problem is discussed for the active identification of
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the unknown parameter in an information theoretic setting using the Shannon en-

tropy as the information measure. An information-based multi-agent exploration

framework is addressed in [132].

2.2.1.1 Open loop Optimal Input Design

The system identification for nonlinear systems highly depends on the relation of

achieved accuracy of the identified model and the exogenous input signal used to

excite it. This idea motivated many researchers in mid 70’s to study the OID in

open loop [117,133]. The research conducted in 1970’s on OID for the identification

of the systems, is mostly focused on the open loop systems [134–136]. The design

variables were selected as either the sampling interval or the choice of the input

signal. The optimization is performed in a statistical framework for both time-

domain and frequency domain by considering the scalar functions of parameter

covariance matrix as criteria for OID [137]. It is often assumed that the error is

only due to the variance of the system and an open loop design are introduced

based on some scalar criteria of information matrix X. The commonly used criteria

are:

• A-optimality criterion: min trace(X−1).

• D-optimality criterion: max det(X).

• E-optimality criteria: max λmin(X−1).

where, λmin is the minimum eigenvalue of the information matrix. The time-

domain solutions are defined as finite sequence of input data while the frequency

domain solutions are based on the spectrum of designed optimal input [123]. There

are two important results associated with it, i.e,

1. For the power constrained inputs, the set of average information matrices

are convex in the spectrum of the input signal.
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2. The information matrix X, can be obtained from input signals containing

no more than n(n+1)/2 + 1 sinusoidal components, where n is the number of

parameter estimated.

For the model-based control design, usually some distances between the identified

information and the nominal value of the system is minimized. It is noted that

the closed loop performance is better and the sequence of control used during the

identification process should match the desired model based controller [138]. Some

recent developments in the field of OID have led to the least costly identification

[139] which tries to minimize the cost subjected to some constraints. In [140], a

more balanced approach is proposed between the least-costly identification and

classical experiment design problems. Some other examples are presented in the

H∞ control framework [125, 141, 142]. In [143], an novel idea is presented which

proposes that a good OID can yield only important properties of the process while

the less important are neglected. The idea is extended to application oriented input

design in [124,144].

2.2.1.2 Closed loop Optimal Input Design

The major issue faced in open loop optimal control design is non-convex problems

which lead to increasing computational complexities. Also, safety regulations or

the cost of interrupting the normal operation, makes it difficult to perform it. It

is not advisable to change the existing closed loop controller with an open loop

controller in order to yield the maximum information. The problem is addressed

by using the high-order expressions to achieve the desired model accuracy. Results

obtained from high-order terms are quite accurate but there are cases where they

failed to perform, see for example [145]. Also, the frequency-wise constraints are

not handled perfectly which is an important aspect of robust control design.

The limitations associated with open loop OID are addressed by many researchers

[125, 146–148] by introducing a new approach to solve the input design problem.

These methods have shown that most of the open loop problems can be solved in

a convex program. For the control applications, various arguments are presented
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in favor of identification in closed loop. For example, in [123], it is shown that

for a high order variance situation, the experiment design under closed loop with

minimum variance control are optimal. A similar problem is addressed in [135]

where it is claimed that the closed loop input signal can outperform any fixed input

design signal provided the experiment horizon is long enough. In [136], the use of

high-order variance terms showed that the closed loop input design are optimal

provided the variance constrained are fulfill. In [149, 150], it is also shown that

closed loop performance is better than open loop for bias error.

The idea of closed loop OID needs to incorporate the controller information in

the experiment design. The usefulness of the closed loop optimal design has been

shown in [123, 135, 151, 152]. In [123], it is considered that the model is used

to design the controller which is responsible to minimize the variance. Hence,

the optimal controller is the minimum variance controller in closed loop setting.

The problem associated with this design framework is that the controller depends

on the complete knowledge of the system to be identified which is not true in

all practical scenarios. In [153], it is shown that the optimal control parameters

depends on the model structure by solving the input design problem in a minimum

variance framework.

2.2.1.3 Sequential Input Design

The major problem arises during an OID is that the solution typically depends on

the true knowledge of the model itself which is unknown for most of the physical

problems. In [154], an optimal robust input design procedure has been proposed

to handle the initial parametric uncertainties for a time-continuous system with

one unknown parameter. The dependence on the system’s unknown parameters

for optimal control design is addressed by sequential procedure which is shown in

Fig. 2.2. The excitation signal is improved online as the information on the system

becomes available.
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Figure 2.2: Sequential Input Design

The procedure is performed in three steps which are given as:

• Step 1: An identification experiment is performed on the unknown system

using some excitation signals.

• Step 2: The identified information is used to construct a model of the

system.

• Step 3: An input signal is generated using the model obtained in the pre-

vious step. The procedure repeats itself as this information is used in Step

1 again.

Many researchers have shown the usefulness of sequential approaches to OID [135,

147,155] for engineering applications. The use of sequential methods in Statistics

[156] and system biology has been presented in [157, 158]. It is also used for dual

control problems where the control has to achieve both identification and control

performance [159]. The key objective is to control the system and then generate

such excitation signal that can excite the system sufficiently.

2.2.2 Applications of Optimal Input Design

The idea of OID is widely researched topic in Statistics where the systems are often

assumed with uncontrollable inputs and static characteristics. In this section, we

will consider the application of OID for industrial process and system biology only.
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2.2.2.1 Input Design for Industrial Process

It is always difficult to design optimal input signal for industrial process as the

practical constraints are often conflicted with the theoretical requirements. It is

discussed in Section 2.2.1.2 that a powerful input signal for a longer time period can

yield more accurate information about the system. This corresponds to industrial

process where the system dynamics are slow and disturbances are high. The cost

of the experiment procedure is low due to short time and small signals. The

objective of the identification step in industry is to identify the data from the

system that must lead to the nominal system in finite time period and deviate

as little as possible from the normal system behavior [160]. It is stated in [161]

that modeling is the most time consuming and expensive part of the model based

control design framework. Most of the industrial process are nonlinear in nature

and it is a topic of concern to design optimal input signal in open loop or closed

loop frameworks [162].

It is always desirable to make the OID experiment user friendly as most of the

control engineers are not familiar with identification. In [162], it is stated that

“the optimal input design framework for identification must be simple and clear;

guidelines must be given. As the information is available, the calculations should be

carried out automatically without the intervention of user”. This idea corresponds

to trade-off between the computational complexity associated with the OID and

the accuracy of the obtained model.

In most of the user-friendly input design frameworks, it is always a trade-off be-

tween the demands of actual plant and theoretical concepts [163, 164]. The con-

straints are imposed on the input signal in-line with the industrial system which are

usually time-domain constraints. The use of identification strategies has reduced

the experimental time and cost and hence it is used widely in industrial applica-

tions [162, 165]. These methods can reduced 70% of the computation complexity

and time of MPC framework.
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2.2.2.2 Input Design for System Biology

The field of system biology addresses the concepts of modeling and analysis of

intracellular process like cell networks, proteins and genes, which are helpful to

understand a disease and to develop some medicine treatments for it. A common

experimental technique used to see the gene activity, which is changed due to

concentration of alcohol or some toxic substance, is microarrays. The measurement

of this input (alcohol concentration) and output (gene activity) gives information

about the connection of different genes.

The concept of microarrays is similar to the idea of OID in system biology but

the process includes high number of input and outputs. For example, humans

have approximately 27000 genes which are inter-connected. Assume that we are

taking one input (alcohol concentration), there will be 27000 outputs which will

be excited by the input signal and if we are interested in the excitation of only

one gene, let suppose X, one can analyze it using microarrays but it is difficult to

tell that the output change in gene is directly influenced by the input or due to

interconnection of other genes.

The idea of input design in system biology is catching the eyes of researchers, see

for example, [166–168]. It is difficult to quantify the modeling errors in system

biology as the gene activity is nonlinear and the uncertainty is large in the output

information. This leads to a poor quality of measurement due to errors and low

signal to noise ratio.

2.2.3 Model Predictive Control for Optimal Input Design

The model-based controllers significantly depends on quality of the model. The

model is usually identified by some system identification strategies which are dis-

cussed in Section 2.1. In this section, we will present some useful material related

to the problem formulation of OID in MPC framework.
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2.2.3.1 Model Predictive Control

Model-based designs are widely used in today’s industrial applications in order

to meet the industry cutting-edge methods for identifying the necessary nonlinear

models. Model predictive control is an optimization based feedback control strat-

egy for nonlinear dynamic systems. Due to its flexibility to handle multivariate

processes, straight forward implementation steps, ability to incorporate the input

and output constrains explicitly and generally applicable control design method,

MPC is a widely used strategy in process industry [169–171]. The use of MPC in

petrochemical industry is very common and most of the process is controlled by

it [168]. Due to increasing speed of processors and explicit MPC (where control is

calculated offline), it is used in faster processes as well.

The property to incorporate the constraints makes MPC a popular choice in dif-

ferent applications but this is considered as a limitation in OID. This is due to the

fact that when input and output constraints are considered, there is no explicit

solution to the MPC optimization problem [172]. There are different problems

associated with the design of optimal input signal in MPC framework:

1. The problem of OID usually relies on the assumption that the true system

parameters are perfectly known. However, this is not true for all physical

problems. This problem is addressed in two ways in literature.

(a) The designed input signal should be robust to parameter changes. This

leads to a robust input design framework, see for example [18].

(b) The problem can also be solved by using the adaptive strategies by

initializing the problem with best available estimate of the parameters

and then the output predictions are updated as more information is

obtained [173].

2. The other problem associated with OID in MPC framework is the choice of

the suitable application cost function. The choice of a good cost function is

still an open problem to address. The cost should be selected in way that
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it can relate the control performance with the identified information on the

parameter. The optimal control signal should point in the direction of the

parameter space for which the performance of the control is sensitive to pa-

rameter changes. These directions are excited more during the identification

procedure in order to get maximum information. Thus, it is important to

chose the cost function intelligently as the performance of the MPC depends

on it.

For the reference tracking problem in MPC framework, the appropriate

choice of cost function could be the difference of the obtained output trajec-

tory resulted by estimated value of the parameter and the desired reference

signal. This could be given as:

Jcost(θ) = 1
N

N∑
t=1

∥∥∥ŷk(θ̂)− rkd∥∥∥2

2
+ ‖uk‖2 (2.1 )

where, ŷk(θ̂) is the output with estimated parameters, rkd is the desired

reference signal and uk is the control signal. This is the most commonly

used cost function in literature [129,174].

3. Another problem is the approximation of the application set. The difficulty

arises due to the unavailability of explicit solution for the MPC to solve

the input-output constraint problem. This leads to large number of time-

consuming simulations and numerical approximations.

2.3 Chapter Summary

This chapter presented a detailed literature survey on OID for nonlinear system

identification. Some system identification strategies were discussed for nonlinear

systems and then use of estimation strategy is motivated for the parameter identi-

fication. The use of Kalman filter and its variants for the system identification was

discussed with some other estimation strategies like particle filters and GSF. The
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OID in both open loop and closed loop framework was presented with some appli-

cations to industrial process and system biology. The use of MPC was motivated

for the OID and relevant literature was presented.
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Chapter 3

FUNDAMENTALS OF OPTIMAL INPUT

DESIGN

“Prediction is very difficult, especially about the future.”

– Niels Bohr

One of the main contributions of this thesis is to introduce a quite general frame-

work for OID for system identification of nonlinear dynamic systems. The aim of

this chapter is to introduce and discuss the fundamentals of this framework. Fur-

thermore, the system identification strategies, the optimality criteria and the MPC

used in this work will be more thoroughly studied. For a historical background on

these topics, we referred the reader’s to see Chapter 2 and the references therein.

First we will give an overview of the main strategies used for identification and

the optimality criteria used in the framework. This introduction will also give a

flavor of what kind of optimality criteria can be used for OID problems in order

to improve the quality of the identified information. Later, a complete description

of MPC framework for OID will be presented.
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3.1 Optimality Criteria for System Identification

3.1.1 Nonlinear Discrete-time System

Consider a general discrete-time stochastic nonlinear system of the form

xk+1 = f(xk, uk, θ) + ξk (3.1a)

yk = h(xk, θ) + ηk (3.1b)

where, k = 0, 1, . . . is the current sampling instance, xk ∈ <nx , yk ∈ <ny , θ ∈ <nθ

and uk ∈ <nu are the state vector, the measurement vector, the unknown param-

eter vector and the input vector, respectively. The measurement noise is given as

ηk ∈ <ny while the process noise is represented by ξk ∈ <nx . The initial condition

x0 of the system is unknown but it is assumed that some a-priori information is

available about its mean and covariance matrix.

3.1.2 Optimality Criteria

In system identification, information theoretic methods are used by many re-

searchers for the solution of related identification problems. The earliest work

presented in [175] has shown a way to use information theory for general sys-

tem identification problems. For the parameter identification, the inverse of the

Fisher information matrix provides a lower bound (also known as the Cramer-Rao

lower bound) on the variance of the estimator [176–178]. For parameter identi-

fication, the use of rate distortion function to find the performance limitations

is a common method [179–181]. The use of information theoretic measures (di-

vergence, entropy, mutual information) with classical identification methodologies

(MSE) has been widely addressed by many researchers [182–184]. It is suggested

by many researchers that entropy and divergence can be used as an information

theoretic identification criterion and it can be helpful to improve the performance

of the identification in more realistic problems.
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In control theory, optimal design is referred to experiment design which are gener-

ated by the use of some optimality criterion. The optimality criterion is responsible

for the quality of the design and shows how good a design is. There are several

optimality criteria discussed in literature which are:

• Information-based criteria.

• Distance-based criteria.

• Compound design criteria.

3.1.3 Information-based Criteria

The information based criteria are referred to the one which depends on the infor-

mation matrix for the design. The information matrix is defined as a matrix which

is proportional to the inverse of the variance-covariance matrix for the least-square

estimate of the linear parameter of the unknown model. The information-based

criteria are further subdivided in the following categories depending upon the

number of parameters used.

3.1.3.1 G-Optimality Criterion

In [185], the G-optimality criterion was first proposed for the optimal design of

regression problems. This criterion is also stated as global criterion in [119] which

aims as a response estimation criterion. It is defined as:

min
xi,i=1,...,n

max
x∈χ

var(ŷx) (3.2 )

which corresponds to minimizing the maximum variance of any predicted state

over the complete experiment horizon. Where, ŷx is the predicted state and its

variance is given as:

var {ŷx} = σ2fT(XTX)−1f (3.3 )

31



where, XTX is the information matrix for the design. Let define a probability

measure ξ on χ, then the normalized generalization form corresponding to var(ŷx)

is given as:

d(x, ξ) = fT
xM

−1
ξ fx

= n
var(ŷx)
σ2

Hence, ξ? will be G-optimal, if and only if

min
ξ

max
x∈χ

d(x, ξ) = max
x∈χ

d(x, ξ?)

The sufficient condition for ξ? to be a G-optimal is

max
x∈χ

d(x, ξ?) = p

where p represents the number of unknown parameters in the model. The design

efficiency for G-optimal design is defined as:

Gξ = p

max
x∈χ

d(x, ξ)

3.1.3.2 D-Optimality Criterion

The aim of D-optimality criterion is to emphasis on the quality of the identified

information. It is the most important and popular design criterion among the

optimal control community and was first proposed as a determinant criterion in

[186]. The problem of D-optimality is addressed by many researchers [118, 137,

187,188] in variety of examples. It is defined as:
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max
xi,i=1,...,n

∣∣∣XTX
∣∣∣ = min

xi,i=1,...,n

∣∣∣(XTX)−1
∣∣∣ (3.4 )

which is stated as maximizing the determinant of the information matrix or it

is equivalent to minimizing the determinant of the inverse of information matrix.

The efficiency of the D-optimal design ξ is given as:

Dξ =

|Mξ|/∣∣∣Mξ?
D

∣∣∣


1/p

where the term ξ?D is assumed to be D-optimal.

3.1.3.3 A-Optimality Criterion

The A-optimality criterion is most widely used criterion for OID. It was first

introduced by [189] which uses the knowledge of Fisher information matrix. In

[190], an algebraic approach for generalized linear systems was proposed. The

criterion is defined as:

min
xi,i=1,...,n

trace(XTX)−1 (3.5 )

which is minimizing the trace of the information matrix or equivalent to minimizing

the average variance of the estimated value of the parameter. The efficiency of the

design ξ is defined as:

Aξ =
trace

[
M−1
ξ?
A

]
/trace[M−1

ξ ]

where, ξ?A is A-optimal.

3.1.3.4 E-Optimality Criterion

The E-optimality criterion was first proposed in [191]. Later, the computations of

E-optimal polynomial regression design was introduced in [192] and to compute the
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E-optimal criterion for a broad class of systems, a method was proposed in [193].

It is defined as:

max λmin(XTX) = min λmax(XTX)−1 (3.6 )

which aims at minimizing the maximum eigenvalue of the (XTX)−1 or equivalently

maximizing the minimum eigenvalue of the information matrix. The efficiency of

the design ξ is given as:

Eξ = λmin(Mξ)
λmin(Mξ?E

)

where, the term ξ?E is assumed as E-optimal.

3.1.3.5 I-Optimality Criterion

The I-optimality criterion or Iv-optimality criterion is the “integrated variance”

criterion, which was first introduced in [137,194]. It tries to minimize the normal-

ized average variance and defined as:

I = n

σ2

∫
R
var(ŷx)dx (3.7 )

where the term R represents the region of interest. The efficiency of the design ξ

is given as:

Iξ =
trace

[
MM−1

ξ?I

]
trace

[
MM−1

ξ

]

where, the term ξ?I is I-optimal. There are several other information-based cri-

teria are discussed in literature such as: DA-optimality criterion [195, 196], Ds-

optimality criterion [120,197,198], EA-optimality criterion [188], L-optimality cri-

terion [137], C-optimality criterion [198–200].
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3.1.4 Distance-based Criteria

The distance-based criteria are defined by the distance d(x,A) from a point x

in the Euclidean space <p of dimension p to a set A ⊂ <p. The distance-based

criterion are further subdivided in these categories.

• U -optimality criterion.

• S-optimality criterion

3.1.4.1 U-Optimality Criterion

The U -optimality criterion is defined as a combination of A-,D-, and E-optimality

criterion which was first proposed in [201]. It is defined as the minimization of the

sum of the distance from each candidate point to the design. It is defined as

min
∑
x∈C

d(x,D) (3.8 )

where, the term C and D are referred to the set of candidate points and set of

design points respectively. It is also named as “uniform coverage” design due to

its ability to uniformly covers the candidate points.

3.1.4.2 S-Optimality Criterion

The S-optimality criterion seeks to maximize the harmonic distance from each

design point to all the other points in the desired design region. It was first

introduced in [202] and defined as:

ND∑
y∈D

1/d(y,D−y)
(3.9 )

where the term ND is the number of points in the region D and D is the set of

the design points. The distance d(y,D− y) represents the spread of the points in

the maximal area and it is also named as “maximum spread” design.
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3.1.5 Compound-design Criteria

The compound-design criteria is defined as the maximization of the weighted prod-

uct of efficiencies [203]. It is defined as:

Definition 3.1. Let ψi(Mi(ξ)), i = 1, . . . , n be defined as a set of n convex design

criteria in a experimental region χ and αi, i = 1, . . . , n be the positive weights,

then the compound design criterion is defined as:

ψξ =
n∑
i=1

αiψi {Mi(ξ)} (3.10 )

which is minimized by selecting the value of ξ.

There are two different types of compound design criteria discussed in literature:

• DT -optimality criterion

• CD-optimality criterion

3.1.5.1 DT-Optimality Criterion

The idea of DT -optimality criterion was introduced in [203] which is a combination

of D- and T -optimality criterion. It gives the advantage of a balance between

parameter identification and model discrimination. It is defined as:

φDTξ = (1− k) log ∆2(ξ) + (k/p log |Mξ|) (3.11 )

where the term φDTξ is the combination of T -optimality criterion (log ∆2(ξ)) and

the D-optimality criterion.

3.1.5.2 CD-Optimality Criterion

It was first introduced in [203] as a combination of parameter estimation and C-

optimality. It seeks to determine the estimate of the parameter and minimize the

area under the curve. It is given as:
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φCDξ = (k/p) log |Mξ| − (1− k) log cTM−1
x ic (3.12 )

The term (1 − k) log cTM−1
x ic is the C-optimality criterion. There are several

other criteria are also discussed in literature, for example, T -optimality which was

proposed in [204].

3.2 System Identification Strategies

The choice of a suitable model is a crucial step in system identification which

gives a trade-off between complexity and the quality of the model. In this work,

a system of the form (3.1) is used with different KF variants and GSF for the

estimation and identification of states and parameters respectively. A detailed

methodology of simple KF is given in Appendix A while EKF, UKF and GSF are

presented in this section which will be used as system identification strategy in

the proposed framework given in Fig. 4.1.

3.2.1 Extended Kalman Filter

The nonlinear version of KF is known as EKF in estimation theory. The filter

tries to linearize about the current value of the estimated mean and covariance. In

control theory, EKF has been used as a sub-optimal state estimator for uncertain

nonlinear systems. In this work, we have treated the unknown parameter vector

θ as an augmented state with the state vector. Consider a general discrete-time

nonlinear system given as:

xk+1 = fk(xk, uk, θ) + ξk (3.13 )

yk = hk(xk, θ) + ηk (3.14 )

where, k = 0, 1, . . . is the sampling index, xk ∈ <nx , uk ∈ <nu , θ ∈ <nθ and

yk ∈ <ny are state vector, input vector, unknown parameter and the output vector
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respectively. The term ξk is the white-noise sequence with zero-mean and covari-

ance Qξ
k and ηk is the white-noise sequence with zero-mean and covariance Rk. It

is assumed that the initial condition xo is obtained from a known density function

p(xo). The two noise quantities ξk and ηk do not depend on the initial condition

xo and are assumed to be mutually independent.

Consider the nonlinear discrete time system given in (3.13), the prediction step of

EKF strategy is given as

x̂k+1|k = f(x̂k|k, uk, θ̂k|k)

θ̂k+1|k = θ̂k|k

Pk+1|k = FkPk|kF
T
k +Qk

where, x̂k+1|k is the predicted state vector, θ̂k+1|k is the predicted parameter vector

and the prediction of covariance matrix is given as Pk+1|k. The term Qk is a

covariance matrix given as

Qk =

 Qξ
k 0

0 Qθ
k



where, the term Qξ
k is the part of the covariance matrix related to the system

states while the term Qθ
k accounts for the possible uncertainties in the evolution of

identified parameter vector. Where the latter are considered constant over time,

we put Qθ
k = 0. A term different from zero can be used to model slow changes in

their values. The term Fk represents the Jacobian of the system equation given in

(3.13) and represented as

Fk =


∂f(x, uk, θ)

∂x

∂f(x, uk, θ)
∂θ

0 Inθ


x = x̂k|k

θ = θ̂k|k
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The innovation step is given as

ŷk+1|k = h(x̂k+1|k, θ̂k|k)

vk+1 = yk+1 − ŷk+1|k

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1

Wk+1 = Pk+1|kH
T
k+1S

−1
k+1

where, Hk+1 is the Jacobian of the measurement equation and given as

Hk+1 =
[
∂h(x, θ)
∂x

∂h(x, θ)
∂θ

]
x = x̂k+1|k

θ = θ̂k+1|k

The updated state estimate and updated covariance matrix estimate is given as

[
x̂T
k+1|k+1, θ̂

T
k+1|k+1

]T
=
[
x̂T
k+1|k, θ̂

T
k|k

]T
+Wk+1vk+1 (3.15 )

Pk+1|k+1 = Pk+1|k −Wk+1Sk+1W
T
k+1 (3.16 )

where, x̂k+1|k+1 is the updated state estimate, θ̂k+1|k+1 is the updated parameter

estimate and Pk+1|k+1 is the updated covariance matrix of the system. The flow

chart for one cycle of EKF estimation is shown in Fig. 3.1.
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Figure 3.1: EKF Flow Chart (One Cycle)

3.2.2 Unscented Kalman Filter

For the systems with highly nonlinear dynamics, EKF does not perform up to the

mark because a linearized model is used to propagate the covariance matrix of the

system. In the case of complex nonlinear systems, it involves costly computation

of the Jacobian matrices which leads to slow convergence and implementation

difficulties. Also, if the sampling time is not sufficiently small, this linearization

leads to filter instability. In order to address the limitations possessed by EKF

in terms of linearization, unscented transformation (UT) is used to estimate the

mean and covariance matrix instead of linearization by the Jacobian matrices. The

UKF addresses the assumption that it is easy to estimate a Gaussian distribution

rather than to approximate an arbitrary complex nonlinear system.

Consider the nonlinear dynamic system given in (3.1). To explain the UKF algo-

rithm in detail, we assumed that unknown parameter vector θ is augmented with

other states in the vector zk ,
[
xT
k θT

]T
. For the sake of simplicity, in this section

we will use zk to represent the state vector. With a little abuse of notation, we

will use zk as argument of the state and measurement function given in eq. (3.1)

instead of the couple (xk, θ). Let L , nx + nθ be the dimension of the vector zk
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and Z be the matrix of 2L + 1 sigma vectors Zi (with corresponding weights ωi)

using the unscented transformation as

Z0 = ẑ0|0

Zj = ẑ0|0 + (
√

(L+ λ)P )j j = 1, ..., L

Zj = ẑ0|0 − (
√

(L+ λ)P )j−L j = L+ 1, ..., 2L

where, the weight of each sigma point Zj can be calculated as:

ωm0 = λ

L+ λ

ωc0 = λ

L+ λ
+ (1− ρ2 + υ)

ωmj = ωcj = 1
2(L+ λ) j = 1, ..., 2L

where, λ = ρ2(L+κ)−L is a scaling parameter having any arbitrary value except

λ 6= −n. The value of ρ determines the spread of the sigma points around x̂k

while κ is secondary scaling parameter which is usually set to zero. The value of

υ is set to incorporate prior knowledge of the distribution of zk. At time k = 0,

take Zk|k0 = ẑk|k. The time update equations of UKF algorithms for k = 1, ..., N

is given as:

41



Zk|kj =
[
ẑk|k ẑk|k ±

√
(L+ λ)Pk|k

]
j

Zk+1|k
j = f

[
Zk|kj , uk

]
ẑk+1|k =

2L∑
j=0

ωmj Z
k+1|k
j

Pk+1|k =
2L∑
j=0

ωcj
[
Zk+1|k
j − ẑk−

] [
Zk+1|k
j − ẑk−

]T
Υk+1|k
j = h

[
Zk+1|k
j

]
ŷk+1|k =

2L∑
j=0

ωmj Υk+1|k
j

The measurement update equations are given as:

Pyk+1yk+1 =
2L∑
j=0

ωcj
[
Υk+1|k
j − ŷk+1|k

] [
Υk+1|k
j − ŷk+1|k

]T

Pxk+1yk+1 =
2L∑
j=0

ωcj
[
Zk+1|k
j − ẑk+1|k

] [
Υk+1|k
j − ŷk+1|k

]T
Kk+1 = Pxk+1yk+1P

−1
yk+1yk+1

ẑk+1|k+1 = ẑk+1|k +Kk+1(yk+1 − ŷk+1|k)

Pk+1|k+1 = Pk+1|k −Kk+1Pyk+1yk+1K
T
k+1

where ẑk+1|k+1 ,
[
x̂T
k+1|k+1, θ

T
k+1|k+1

]T
is the updated state estimate and Pk+1|k+1

is the updated covariance matrix of the system. There are many other variants of

KF which are studied in literature but those are out of scope of this thesis.

3.2.3 Gaussian Sum Filter

In more sophisticated nonlinear estimation schemes, an attempts is usually made

to calculate the desired a posteriori probability density function (pdf) or at least

the sufficient statistics of these functions. Though the approach used for this

purpose is conceptually appealing, but a high level of complexity is associated
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with it in case when no approximation is used. In general, the computation of pdf

requires a large storage of bits as for every value of the state, the corresponding

value of the pdf must be stored. Also, the computation cost for such strategies is

high, as in each iteration, an integration is required. Approximations are made to

compensate for the storage and computation problems.

In previous section, a detailed discussion is carried on EKF algorithm which in-

volves approximation of first and second order terms of the densities. The idea

can be improved by using the higher order moments which focused on the ap-

proximation of the density near to mean value. In GSF, a Bayesian estimation

algorithm is introduced by using the Gaussian sum approximation for the proba-

bility densities. The fundamental idea behind the Gaussian sum approximation is

to approximate a density function as a weighted sum of several Gaussian densities.

The covariance associated with these densities is usually assumed very small and

its mean and variance is calculated by the EKF algorithm. The resulting filter is a

bank of weighted EKF, where every EKF provides the evaluation of the assigned

density function and the weights are computed from the EKF residuals. If the

noise is considered small, the resulting estimator can give near optimal solutions.

3.2.3.1 Gaussian Sum Approximations

Gaussian sum filter is most frequently used state estimation strategy for the non-

linear systems. The filter evolves on the linearization of the system using the

current value of the estimates and utilizing the EKF algorithm equations. This

requires two types of approximation: first, the linear model is used instead of

nonlinear model and second, the a posteriori density function is approximated by

a Gaussian density function. The GSF has increased the validity of the approxi-

mation of the physical system to a great extant and eliminated the assumption of

density function to be Gaussian.

Consider a general discrete-time nonlinear system given as:
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xk+1 = fk(xk, uk, θ) + ξk (3.17 )

yk = hk(xk, θ) + ηk (3.18 )

where, k = 0, 1, . . . is the sampling index, xk ∈ <nx , uk ∈ <nu , θ ∈ <nθ and

yk ∈ <ny are state vector, input vector, unknown parameter and the output vector

respectively. The term ξk is the white-noise sequence with zero-mean and covari-

ance Qξ
k and ηk is the white-noise sequence with zero-mean and covariance Rk.

In the probabilistic context of GSF, the a posteriori density function p(xk|Zk)1

provides the most complete information on xk, where Zk = [y1, . . . , yk, u1, . . . , uk].

Let N (xk − x̂i,k|k, Pi,k|k) is a normal Gaussian density function which is expressed

as:

N (xk − x̂i,k|k, Pi,k|k) = (2π)−n/2
∣∣∣Pi,k|k∣∣∣−1/2

e
−(1/2)(xk−x̂i,k|k)TP−1

i,k|k(xk−x̂i,k|k) (3.19 )

where, x̂i,k|k is the mean vector and Pi,k|k is the covariance matrix. The following

Lemma states the approximation properties of GSF.

Lemma 3.2. Any Probability density function p(xk) can be approximated as closely

as desired in the space 2 L1(<n) by a Gaussian sum representation of the form

pA(x) =
m∑
i=1

αi,kN (xk − x̂i,k|k, Pi,k|k) (3.20 )

for some integer m, positive scalars αi,k|k with ∑m
i=1 αi,k = 1, mean vector x̂i,k|k

and positive definite covariance matrices Pi,k|k [106, 205].

The pA(·) is non-negative and integrates to 1 over the <n. As the number of

Gaussian m increases, the approximation error is minimized accordingly. For
1In GSF context, the superscript ()k will denote the sequence up to and including k.
2The approximation is such that

∫
<n |p(x)− pA(x)| dx can be made arbitrarily small.
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the sake of simplicity, we are assuming that Xk = [xk, θ]T represents the new

augmented state vector. To help understand the Gaussian sum approximation

algorithm, let assume that the p(Xk|Zk) is expressed as:

p(Xk|Zk) ≈=
m∑
i=1

αi,kN (Xk − X̂i,k|k, Pi,k|k) (3.21 )

Then, Xk|k = E(Xk|Zk) and Pk|k = V ar(Xk|Zk) are readily calculated by using

these equations:

X̂k+k =
m∑
i=1

αi,kX̂i,k|k (3.22 )

Pk|k =
m∑
i=1

αi,k
{
Pi,k|k + (X̂k|k − X̂i,k|k)(X̂k|k − X̂i,k|k)T

}
(3.23 )

For the proof, the readers are referred to see Appendix B.

Time-update Equation

The pdf p(Xk|Zk−1) is given as a sum of Gaussian probability densities

p(Xk|Zk−1) =
∫
p(Xk|Xk−1)p(Xk−1|Zk−1)dXk−1

≡
m∑
i=1

αi,k−1N (Xk − X̂i,k|k−1, Pi,k|k−1)

For each Gaussian density (value of i), the prediction equations are obtained by

using the EKF equations as

X̂i,k|k−1 = f(X̂i,k−1|k−1, uk) (3.24 )

Pi,k|k−1 = Fi,k|k−1Pi,k−1|k−1F
T
i,k|k−1 +Qk (3.25 )

45



where, X̂i,k|k−1 is the predicted state vector for ith density function and the pre-

diction of the covariance matrix is given as Pi,k|k−1. The term Qk is the noise

covariance matrix. The matrix Fi,k|k−1 is computed as:

Fi,k|k−1 = ∂f(Xk−1, uk)
∂Xk−1

∣∣∣∣∣
Xk−1 = X̂i,k−1|k−1

(3.26 )

In the same way, the value of X̂k|k−1 and Pk|k−1 are computed as

X̂k|k−1 =
m∑
i=1

αi,k−1X̂i,k|k−1 (3.27 )

Pk|k−1 =
m∑
i=1

αi,k−1
{
Pi,k|k−1 + (X̂k|k−1 − X̂i,k|k−1)(X̂k|k−1 − X̂i,k|k−1)T

}
(3.28 )

Measurement-update Equation

The probability density function p(Xk|Zk) can be found from p(Xk|Zk−1), when

the new measurement yk becomes available. The probability density function

p(Xk|Zk−1) is the weighted sum of Gaussian densities and similarly, p(Xk|Zk) can

be calculated and expressed as

p(Xk|Zk) = p(yk|Xk)p(Xk|Zk−1)∫
p(yk|Xk)p(xk|Zk−1)dXk

=
m∑
i=1

αi,kN (Xk − X̂i,k|k, Pi,k|k)

The updating equations are computed by using the extended Kalman filter equa-

tions as

X̂i,k|k = X̂i,k|k−1 +Wi,k

[
yk − h(X̂i,k|k)

]
(3.29 )

Pi,k|k = Pi,k|k−1 −Wi,kSi,k|k−1W
T
i,k (3.30 )
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where,

Wi,k = Pi,k|k−1H
T
i,k|k−1S

−1
i,k|k−1 (3.31 )

Si,k|k−1 = Hi,k|k−1Pi,k|k−1H
T
i,k|k−1 +Rk−1 (3.32 )

Hi,k|k−1 = ∂h(Xk)
∂Xk

∣∣∣∣∣
Xk = X̂i,k|k−1

(3.33 )

As, p(Xk|Zk) is approximated by the linear combination of the densities with

weight αi,k, which is calculated as

αi,k = αi,k−1N (yk − h(X̂i,k|k−1), Si,k|k−1)∑m
j=1 αj,k−1N (yk − h(X̂j,k|k−1), Sj,k|k−1)

(3.34 )

which motivates to the following result,

Theorem 3.3. With the measurement available according to (3.1) and probability

function p(Xk|Zk−1), the updated probability density function p(Xk|Zk) is given as

p(Xk|Zk) =
m∑
i=1

αi,kN (Xk − X̂i,k|k, Pi,k|k) (3.35 )

and converges to Xk and yk (which refers to minimization of the approximation

error) as Pi,k|k → 0 for i = 1, 2, . . . ,m [206].

Key Points for Filter Implementation

In the above discussion, a GSF algorithm is presented. For the updated mean and

covariance, both time-update and measurement-update equations are taken from

EKF algorithm. The overall algorithm requires the implementation of m separate

EKF running in parallel and tuning the weight αi,k as the new measurement is

available. The updated mean-square-error estimate X̂k|k is the weighted sum of

all the estimates obtained from EKF algorithm in (3.29).
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The above discussed GSF algorithm can be summarized as a recursive estimation

strategy for updating a posteriori density which is initialed at time k = 0.

• Initialize the system with the following initial values X̂i,0|0 and Pi,0|0. The

recursive algorithm presented in equations (3.24), (3.25) and (3.29)-(3.33) is

used to compute X̂i,k|k and Pi,k|k for all the Gaussian densities i = 1, . . . ,m

and k = 1, . . . ,.

• For i = 1, . . . ,m and k = 1, . . . ,, using the initial weight αi,0 and the mea-

surement yi,k|k−1, the updated weight αi,k can be obtained.

• Apply the measurement-update equation as discussed in Theorem 3.3 to

obtained the updated estimate of augmented state vector and covariance

matrix.

• Update the time instance as k + 1 = k.

3.3 Nonlinear Model Predictive Control for Op-

timal Input Design

NMPC is an optimization based feedback control strategy for nonlinear dynamic

systems. Due to its flexibility to handle multivariate processes, straight forward

implementation steps, ability to incorporate the input and output constrains ex-

plicitly and generally applicable control design method, NMPC is a widely used

strategy in process industry. At every sampling instant k, a numerical optimiza-

tion problem is solved using the identified information. The first control of the

optimized sequence is applied and the process is repeated at next time instant

k + 1. Due to the shift of control horizon window on every sampling instant, the

optimization problem is also named as receding horizon optimization problem.

3.3.1 Model Predictive Control Framework

At the core of any MPC implementation is a model of the process that is to be

controlled. Typically, MPC uses a deterministic model for predicting the results of
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the control action and disturbances. Consider the discrete-time nonlinear dynamic

system given in (3.1) which is used to estimate the unknown states and parameters

by the EKF or UKF as discussed in Section 3.2 and the control is designed in

MPC framework using this information. The prediction horizon is used to define

the number of sample or iterations for which the identification is performed while

control horizon represent the number of samples in the optimization horizon. The

general quadratic cost function Jk used to define the controller in MPC framework

is given as:

Jk =
N−1∑
k=0

gk(xk, uk, θ) + gN(xN) (3.36 )

where the term gk(xk, uk, θ) represents the transition cost computed at time in-

stance k = 0, 1, . . . , N − 1 and gN(xN) is the final cost computed at time instance

k = N . The term T in Fig. 3.2 represents the prediction horizon while the term

N represents the control horizon. The optimization problem is solved at every

sampling instance k as:

Ū?
k = arg min

Ūk

Jk(Ūk)

where the column vector Ūk ∈ <mN containing the full sequence of candidate

control vectors considered at time k for ` = 0, 1, . . . , N − 1 which is subjected to

x̂k+1 = f(xk, uk, θ) k = 0, 1, . . . , Ny − 1

ŷk = h(xk, θ) k = 1, . . . , Ny,

x̂0 = xk, (3.37 )

û0 = uk−1,

x̂k ∈ X , ûk ∈ U , ŷk ∈ Y
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Figure 3.2: Receding horizon principle

where, the term uk−1 is the applied input at sampling instance k− 1, X ,U and Y

are set of constraints on states, outputs and inputs respectively.

The solution to the optimization problem presented in (3.37) produced sequence

of controls over the complete control horizon. However, at every sampling instance

k, only the first control input of the sequence is applied to system, i.e. uk = ū?k.

The procedure is repeated at next sampling instance k+1 and the whole principle

is illustrated in Fig. 3.2.

As both prediction and control horizons are shifted at next sampling instance, a

measurement of the state trajectory is taken and used in the optimization frame-

work. But in real life applications, it is difficult to measure all the system states

and parameters due to possible physical constraint on the system states or due to

the presence of noise or uncertainty in the measurement. The problem is addressed

by introducing the concepts of nonlinear filters, observers or estimators which re-

sults in least-costly identification of the unknown parameters of the system.

The model obtained from the system identification steps is responsible for the

quality of the MPC control sequence and system performance. Models with un-

certainties or imprecise information leads to tracking errors due to wrong gain

estimates. The problem is address to some extent by introducing the concept
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of integral action to MPC framework. The modeling errors due to measurement

noise or uncertainties may also lead to violation of the constraints or in worst case

scenario may cause instability of the system. Hence, the quality of the model is of

central importance for OID in MPC framework.

3.4 Chapter Summary

In this chapter, a detailed description was presented on fundamentals of proposed

OID framework for active parameter identification. For system identification of

nonlinear dynamic systems, extended Kalman filter, unscented Kalman filter and

Gaussian sum filter were used. Detailed discussion was presented on the three

strategies and the complete algorithm was discussed. The details of linear Kalman

filter is presented in Appendix A. To address the optimality criterion for the iden-

tified information, a detailed study was presented for different optimality criteria.

From the information-based criteria, A-optimality criteria was used in this thesis.

The general model predictive control formulation is presented later to understand

the framework.
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Chapter 4

OPTIMAL INPUT DESIGN FOR ACTIVE

PARAMETER IDENTIFICATION

“We definitely use nonlinear systems and nonlinear indicators. Linear

indicators, such as filters with moving averages, have been mined dry.”

– William Eckhardt

In this chapter, the proposed OID framework for active parameter identification

(API) is presented. The details discussed in Chapter 3 will be used to develop a

feedback control law for parameter identification and control performance.

4.1 System Description

In this section, a detailed description of general nonlinear dynamic system is pre-

sented which will be used in this chapter and rest of the thesis.

4.1.1 Preliminaries

Consider the state vector xk ∈ <nx of a given nonlinear discrete time system which

evolves according to a given equation

xk+1 = fk(xk, uk, θ) + ξk k = 0, 1, . . . (4.1 )
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where, k is the current sampling index, uk ∈ <nu is the control vector, θ ∈ <nθ is

the unknown parameter vector and ξk is the white-noise sequence with zero-mean

and covariance Qξ
k. It is assumed that the initial condition xo is obtained from

a known density function p(xo). The system behavior is observed through the

measurement equation for the quantities yk ∈ <ny as

yk = hk(xk, θ) + ηk k = 0, 1, . . . (4.2 )

where, ηk is the white-noise sequence with zero-mean and covariance Rk. The

two noise quantities ξk and ηk do not depend on the initial condition xo and are

assumed to be mutually independent.

4.1.2 Active Parameter Identification Problem

The problem of OID for active parameter identification is to find such an optimal

control law that can maximize the amount of information on the unknown system

parameters while satisfying some desired system performance measures. In liter-

ature, two methods are often proposed for the solution of OID problem. In the

first case, it is assumed that the system states and parameters are all measurable

and the optimal control signal is designed on the basis of the measured informa-

tion [207]. But in real life applications, it is difficult to measure all the system

states and parameters due to possible physical constraint on the system states or

due to the presence of noise or uncertainty in the measurement. The problem is

addressed by introducing the concepts of nonlinear filters, observers or estimators

which results in least-costly identification experiment [208–210].

In order to formally state the problem of active parameter identification in OID

framework, let us first introduce the idea of active parameter identification.

Definition 4.1. The active parameter identification (API) problem is to find such

an optimal feedback control law which when subjected to the system given in (4.1),

yields the maximal amount of information on the uncertain parameter vector θ

and achieves some desired system performances.
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Figure 4.1: Block Diagram: Active Parameter Identification

Here, the idea of API is presented as an OID problem. The information obtained

from the identification experiment is used to solve a receding horizon optimal

control problem in NMPC framework. The complete idea of the proposed strategy

is given in Fig. 4.1, where plant is the nonlinear discrete time dynamic system and

system identification and estimation block represents the identification strategy

(EKF, UKF or GSF) providing the necessary information about the unknown

state vector xk, unknown parameter vector θk and the covariance matrix Pk. The

controller design block represents the MPC framework to design the excitation

signal. The terms ξk and ηk are the process and measurement noise respectively.

The fundamental objective of this strategy is to design an optimal control law

for the system given in (4.1) which can maximize the amount of information on

the unknown system parameters by minimizing some cost related to the identified

parameters while considering also some process performance and constraints on

the system. The problem of API in the OID framework can be stated as

Problem 4.2. Let α ∈ [0, 1] be a trade-off factor and N be the maximum sampling

index in control horizon for which the API problem is solved in the OID framework

for k = 0, 1, . . . , as

Jk = αJprock + (1− α)J infok + βJ consk (4.3 )
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where, Jk is the total cost computed at every sampling instance k, Jprock represents

the process cost related to the desired performance of the system and J infok rep-

resents the information cost related to the identified parameter. The term J consk

represents a soft constraint function (exterior penalty function) on estimated sys-

tem states x̂k and the sequence of controls uk to keep it in possibly specified bounds

while β is the penalty parameter used to weight different constraint functions. The

choice of β is made with monotonically increasing values by the use of sequential

unconstrained optimization technique ( [211]) which is presented in Appendix C. By

acting on the trade-off parameter α, one can solve between a conventional receding

horizon optimal control problem α = 1 and an optimal identification experiment

α = 0. It is also possible to chose a value of α ∈ (0, 1) where on can achieve both

identification of the parameter and achieve the desired system performance.

Since the aim of the proposed OID framework is to collect the maximum system

information from the identification experiment, it is necessary to minimize some

cost (identification criterion) related to the identified parameters. As a measure of

accuracy of the identified information, it has substantial influence on the design of

optimal input signal. In order to excite all the process modes, the designed input

signal must be sufficiently rich to persistently excite the unknown system which

depends on the identified information but also should account for the (estimated)

states of the system in order to avoid configurations where the gain in information

on the parameter is poor. Thus it is important to choose a suitable optimality

criterion for the identification experiment. A detailed description on the selection

of optimality criterion is presented in Section 3.1.

4.2 Identification Step

The aim of OID framework is to obtain the maximum amount of information from

the unknown nonlinear system by minimizing a cost related to the identification

of the parameter and generate a system model which when subjected to some

control application, guarantees the acceptable desired control performance. As

the designed control input directly influences the estimate of the system states
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and its parameters accordingly, the desired control performance is affected by its

design. In this work, we have tried to make a comparison study for OID based

on different nonlinear system identification techniques i.e. EKF, UKF and GSF

which are discussed in detail in Section 3.2. A comparison is made on the basis

of identification performance for parameters and states and also on the system

performance to track the reference signal.

4.2.1 Extended Kalman Filter

In systems and control community, the use of EKF for nonlinear system identi-

fication is very common. Due to statistical nature of the algorithm, it provides

information about the (approximate) probability distribution of identified data

which is helpful in improving the quality of obtained information. It is beneficial

to use of EKF over other classical identification method as it provides information

about variance of the estimation error which is partially or completely ignored in

other identification techniques. This identified information is used to shape the

input spectrum which results in achieving the desired control specifications. In

this work, the idea of using EKF is to accurately identify the unknown/uncer-

tain system parameters and states and design the optimal input signal using the

identified information. The detail EKF methodology is presented in Section 3.2.1.

4.2.2 Unscented Kalman Filter

For the systems with highly nonlinear dynamics, EKF does not perform up to the

mark because a linearized model is used to propagate the covariance matrix of the

system. In the case of complex nonlinear systems, it involves costly computation

of the Jacobian matrices which leads to slow convergence and implementation

difficulties. Also, if the sampling time is not sufficiently small, this linearization

may lead to filter instability. In order to address the limitations possessed by

EKF in terms of linearization, UT is used to estimate the mean and covariance

matrix instead of linearization by the Jacobian matrices. The UKF addresses

the assumption that it is easy to estimate a Gaussian distribution rather than

to approximate an arbitrary complex nonlinear system. In control community,
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UKF emerges as a strong and powerful nonlinear estimation method and proved

its superiority over the EKF in many applications. In this work, UKF is used

with the MPC framework to identify the unknown parameters and states of the

system. The information obtained from UKF is used for the OID and the results

are compared with the one obtained by EKF. The detailed formulation of UKF

algorithm is presented in Section 3.2.2.

4.2.3 Gaussian Sum Filter

For the systems with high estimation error or high level of measurement noise

or non-Gaussian noise case, the performance of EKF (or UKF) degrades. Also,

the EKF algorithm only involves the approximation of first and second order

moments of the probability density function. This idea is refined by considering

the high order moments of the densities in GSF. The Gaussian sum approximation

for the nonlinear state estimation is catching the interest of the researchers in

context of Bayesian estimation. In GSF algorithm, a more sophisticated Gaussian

sum approximation is used for nonlinear system estimation which calculate the

a priori density by means of Gaussian sum densities. The algorithm involves

a bank of extended Kalman filters, which are solved, in parallel, for each term

in the Gaussian sum. In this dissertation, we have used the GSF algorithm as a

estimation strategy for both unknown states and parameters of nonlinear dynamic

system in the proposed combined framework. The information obtained from

the GSF is used for the OID and a comparison study is carried out with the

results obtained from EKF or UKF. A detailed discussion of GSF is presented in

Section 3.2.3.

4.3 Optimality Criterion

The key idea behind the active parameter identification is to shape the optimal

input signal in such a way that the quality of the identified information become as

good as possible. In practice, some information measure related to the covariance

matrix of the identified parameter vector P θθ
k is optimized in order to maximize
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the amount of information from the system. A detailed discussion on the optimal-

ity criteria was presented in Section 3.1 where three different types of optimality

criteria are discussed i.e, information-based criteria, distance-based criteria and

compound design criteria. Due to high level of complexity and extensive compu-

tational cost associated with compound design criteria and distance-based criteria,

the use of both criteria is not very frequent.

In this work, we are using A-optimality criterion from the information-based crite-

ria as the possible cost related to the identified parameter. The choice is motivated

by the fact that the information is directly available and it depends on the infor-

mation matrix for the design problem. It minimizes the variance of the unknown

parameter vector, which is similar to maximizing the information on the unknown

parameters.

4.3.1 A-Optimality Criterion

Among different optimality criteria discussed in Section 3.1, the A-optimality cri-

terion is a popular choice to use as an information cost in OID framework. In

this work, A-optimality criterion is used as the information cost which tends to

improve the quality of the identified information by minimizing the trace of the

covariance matrix related to the unknown parameter. The A-optimality criterion

is described as

A−optimality = trace (P θθ
k ) (4.4 )

where P θθ
k is the part of the covariance matrix related to the identified parameter

vector θk. The choice will help to improve the quality of the excitation signal which

correspondingly will improve the expected knowledge of the unknown system. The

full covariance matrix is given as

58



Pk|k =

P xx
k|k P xθ

k|k

P θx
k|k P θθ

k|k



where P xx
k|k is the part of the covariance matrix related to the estimated states

while P θθ
k|k is the part of the covariance matrix related to the unknown parameter.

The cross-diagonal terms P xθ
k|k and P θx

k|k represents the part of the covariance matrix

associated with both estimated states and parameters.

4.4 Optimal Input Design Framework

In this section, all the fundamentals of OID framework (presented in previous sec-

tions and chapters) for active parameter identification are put together to propose

a combined algorithm.

4.4.1 Nonlinear Model Predictive Control

Due to straightforward implementation algorithm, bulk of research literature, flex-

ibility to deal with several model types and ability to explicitly incorporate the

constraints, NMPC has been widely used in process industry. At every time in-

stant, the system is updated using the information obtained from the identification

experiment and the optimization process is repeated simultaneously. As the con-

trol horizon is shifted on every time instant, this problem is also called receding

horizon optimization problem. The process is repeated on every time instant using

only the first control sequence. In this work, a receding horizon optimization prob-

lem is formulated as discussed in Section 3.3 and solved by using MPC framework

which tends to minimize a cost related to the identified information and design an

optimal control signal that can help to achieve the desired system performance.

4.4.2 Proposed Framework

In this work, the problem of OID for API is proposed in NMPC framework. At

every sampling instance k, the proposed framework is used to solve a receding

horizon optimization problem over a control horizon of N future steps based on
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the identified information. The general cost function given in (4.3) can be written

in the form

Jk(Ūk) = αJprock (Ūk) + (1− α)J infok (Ūk) + βJ consk (Ūk)

= α

[
N−1∑
`=1

Γ
`
(x̄k+`, ūk+`, θ̂k+`|k+`) + Γ

N
(x̄k+N , θ̂k+N |k+N)

]

+ (1− α)E
[
N−1∑
`=1

Π
`
(P̄k+`|k+`) + Π

N
(P̄k+N |k+N)

]

+ β

[
N−1∑
`=0

Ξl(x̄k+`, ūk+`) + ΞN(x̄k+N)
]

(4.5 )

where, k is the current discrete time index and ` represents the time index running

in the control horizon of length N considered at time k. The terms Γ,Π and Ξ

represents the process cost function, the information cost function and the soft

constraint function. The function Γ depends on the states x̄k and the estimate of

the unknown parameter vector θ̂ (states depends on the value of the parameter).

The function Ξ is a soft constraint function on the state and the sequence of control

in order to keep them in the desired constrained region. It is desirable to keep the

sequence of control in certain bound (physical constraints). The candidate control

vectors required to be optimized at every time instance in control horizon ` =

0, 1, . . . , N − 1 are denoted by ūk+`. The column vector Ūk ∈ <mN containing the

full sequence of candidate control vectors considered at time k for ` = 0, 1, . . . , N−

1 is defined as

Ūk
∆= col [ūk, ūk+1, . . . , ūk+N−1]

subjected to the following set of state and input constraints
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x̂kmin ≤ x̂k ≤ x̂kmax

ukmin ≤ uk ≤ ukmax

In the control horizon, the system evolve according to the given equation

x̄k+`+1 = fk(x̄k+`, ūk+`, θ̄) ` = 0, 1, . . . , N − 1

where for every sampling instance k, the process cost Jprock (·) is computed by

the certainty equivalence principle using the online state estimates x̄k = x̂k|k and

θ̄ = θ̂k|k. The process cost includes any possible functions of desired control per-

formance which need to be achieved along with active parameter identification.

For the information cost J infok (·), the expectation is approximated by Monte-Carlo

simulations, averaging among V realization of initial states x̄k and parameter vec-

tor θ̄, generated with mean value x̂k|k and θ̂k|k respectively and covariance matrix

Pk|k. Inside the control horizon ` = 0, 1, . . . , N , the predicted covariance matri-

ces P̄k+`|k+` given in (3.16) which are associated with the state vector xk+` and

parameter vector θ are computed by propagating the identification algorithm (in

simulation) inside the optimization horizon. The system identification method is

initialized with ˆ̄xk|k = x̂k|k−1,
ˆ̄θk|k = θ̂k|k−1 and P̄k|k = Pk|k−1 and carried on by us-

ing the sequence of measurements generated (in simulation) as ȳk+` = h(x̄k+`, θ̄k|k).

For the process cost Jprock given in (4.5), at any time instance k, the transition cost

for ` = 0, 1, . . . , N − 1 and the terminal cost are represented as Γ`(·) and Γ
N

(·)

respectively. The transition cost Γ`(·) is the part of the cost computed during the

propagation of the process at every sampling instance ` = k + 1, . . . , k + N − 1

while the terminal cost Γ
N

(·) is the part of the cost computed at ` = k + N .

For the information cost, at every time index k, the transition cost is represented

as Π
`
(·) for ` = k + 1, . . . , k + N − 1 and the terminal cost is denoted as Π

N
(·)

for ` = k + N . The terms Ξl(·) represent the soft constraint function (penalty

function) for ` = k + 1, . . . , k + N − 1. The term ΞN(·) represents the value of
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the constraint function at ` = k + N . The soft constraint function serves as a

penalizing function for the system states and the sequence of controls to remain

in the desired bound. The constant β > 0 is used to weight the penalty function.

The proposed OID framework uses the NMPC approach at every sampling instance

k = 0, 1, ..., to generate the full control sequences Ū(k) composed of all the control

vectors ū(k + l) for l = 0, 1, .., N − 1 which is optimized by minimizing the cost

given in (4.5)

Ū?
k = arg min

Ūk

Jk(Ūk)

but only the first control vector of the sequence is applied

u(k) = ū∗(k)

The procedure is repeated at next time k+1 by getting a new value of the estimated

parameter and repeat the optimization with a one step forward shift of the moving

horizon.

4.5 Chapter Summary

In this chapter, the problem of OID for the active parameter identification of non-

linear dynamic system was addressed. The problem was formulated in a combined

framework of system identification strategy and NMPC method, where EKF, UKF

or GSF was used for system identification of nonlinear dynamic system and on the

basis of the identified information, an OID problem was solved in NMPC frame-

work. The A-optimality criterion was proposed as a measure of information on

the unknown parameter which tends to minimize the trace of the covariance ma-

trix related to the identified parameter as the information cost. The problem was

formulated in a receding horizon context, where a trade-off parameter α has been

introduced to weight between the process cost and information cost.
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Chapter 5

NUMERICAL EXAMPLES

“A good simulation, be it a religious myth or scientific theory, gives us a

sense of mastery over experience. To represent something symbolically,

as we do when we speak or write, is somehow to capture it, thus making

it one’s own. But with this appropriation comes the realization that we

have denied the immediacy of reality and that in creating a substitute we

have but spun another thread in the web of our grand illusion.”

– Heinz R. Pagels

The proposed algorithm of OID for active parameter identification of nonlinear

dynamic system is evaluated on relatively abstract example like A-toy model and

some complex systems like 2-DOF or 3-DOF nonlinear model of two-wheeled mo-

bile robot. These examples are well discussed and understood in literature and

make it suitable for experimental validation of the proposed algorithm. Evalua-

tion of the proposed method on the discussed examples are made in simulations,

which provides a situation close to theory and are helpful in understanding the

effectiveness of the proposed scheme.

5.1 Numerical Examples

In this section, we have illustrated (in simulations) the effectiveness of the pro-

posed algorithm with the help of numerical examples. The first example, a simple
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“toy” model, provides insight on the objectivity of the OID framework while the

second example, a 3-DOF two-wheeled mobile robot model, is used to see the

implementation of the proposed algorithm on a more realistic and complex non-

linear system. For the comparison study in terms of performance in identifying

the parameter and achieving the desired control performance, UKF and GSF are

used as the identification strategy to compare the results with EKF on a 2-DOF

mobile robot model.

5.1.1 A Toy Example

Consider a simple first order system

ẋ = θx+ u (5.1 )

where θ = −1 is the unknown parameter. The corresponding discrete time non-

linear Euler approximation is given as

xk+1 = xk + δt[θxk + uk] (5.2 )

where, xk is the system state which is assumed to be measurable, θ is the unknown

parameter and uk is the control input. For simplicity we have assumed only one

unknown parameter. The measurement equation is given as


yk = (xk + 1) + ηk, if xk ≥ 0

yk = exk + ηk, if xk < 0
(5.3 )

The measurement equations given in (5.3) is shown in Fig. 5.1 in which it can

be seen that for x < 0 (region 1), the measurement is available according to
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Figure 5.1: Measurement Regions

equation yk = exk + ηk which makes it difficult to obtain any information on

the unknown parameter while for x ≥ 0 (region 2), the measurement is available

as yk = (xk + 1) + ηk and hence it is easy to identify the unknown parameter.

Multiple simulations are performed for a control horizon N = 30 and sampling

time δt = 0.01 with different initial conditions in both regions.

The value of the tunable parameter α is critical to define the control objective as

discussed in Section 4.4. The simulations are performed for two different scenarios

corresponding to the value of α:

• Active parameter identification (α = 0).

• Classical optimal control problem (α = 1).

5.1.1.1 Case 1: Active Parameter Identification (α = 0)

The control objective is to generate such a sequence of controls that can actively

identify the unknown parameters by minimizing the cost related to the covariance

matrix of the unknown parameter vector. Thus, by setting the trade-off factor

in general cost function given in (4.5) to α = 0, the problem of active parameter

identification is solved. The information cost is given as
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J infok = E
[
N−1∑
`=1

κl trace(P̄ θθ
k+`|k+`) + κN trace(P̄ θθ

k+N |k+N)
]

where, κl and κN are positive scalars used to weight the transition and terminal

cost respectively. The simulations are performed with different initial conditions

in order to verify the effectiveness of the proposed algorithm.

5.1.1.1.1 x0 = 0, x̂0 = 0.5, θ̂0 = −0.5 In this scenario, the state trajectory xk

and the estimated value of the state x̂k is at the origin initially x0 = 0 and x̂0 = 0.5

respectively. The initial estimated value of the parameter is given as θ̂ = −0.5. At

the initial point, it is not possible to identify the parameter as the information on

the system trajectory is unavailable. The control is expected to bring the system

to region 2 where it is possible to identify the unknown parameter.
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(b) Identified Parameter & Covariance Matrix

The state trajectory, xk as shown in Fig. 5.2(a), moves in fact to region 2 where

reliable information on state xk can be collected and a quasi-random behavior

can be seen which allows the identification of the parameter. The covariance

matrix related to the identified parameter is minimized which results in a perfect

identification of the unknown parameter as shown in Fig. 5.2(b). The error in the

estimated state (exk) and the identified value of the parameter (eθk) are brought

to zero after some iterations as shown in Fig. 5.2(c) which corresponds to a very
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Figure 5.2: x0 = 0, x̂0 = 0.5, θ̂0 = −0.5, α = 0

good state and parameter estimation. The sequence of control to achieve this

active parameter identification is shown in Fig. 5.2(d).

To show the superiority of the proposed method in terms of parameter identifica-

tion, a random white Gaussian noise of same power as generated by our proposed

algorithm is used to excite the system given in (5.2) with the same initial condi-

tions.
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(b) Identified Parameter & Covariance Matrix

The state trajectory xk moves to region 1 as shown in Fig. 5.3(a) which is not the

desired behavior as the measurement does not give reliable information there and

it is not possible to identify the parameter. The cost related to the covariance of

the identified parameter is not minimized which results in a poor identification of
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Figure 5.3: White Gaussian Noise as Input Signal

the unknown parameter as shown in Fig. 5.3(b). The estimation error, for both

state and parameter, is not brought to zero as shown in Fig. 5.3(c) which refers

to a poor performance of the control input. The white Gaussian input signal is

shown in Fig. 5.3(d).

These simulations indicates that the proposed strategy is effective enough to gen-

erate such excitation signals that provides the maximum information on the un-

known system parameters as compared to a random white Gaussian signal.

5.1.1.1.2 x0 = 4, x̂0 = 4.5, θ̂0 = −0.5 In this case, the system is initialized

with a value x0 = 4 and the estimated value of state and parameter is given as

x̂0 = 4.5 and θ̂0 = −0.5 in region 2, where the information on the system trajectory

is reliable. The control sequence is expected to keep the system trajectory in the

same region in order to identify the unknown parameter.
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(c) exk = xk − x̂k|k, eθk = θ − θ̂k|k
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Figure 5.4: x0 = 4, x̂0 = 4.5, θ̂0 = −0.5, α = 0

Indeed, the state xk shows a random behavior but remains in the region 2 as shown

in Fig. 5.4(a) which results in the identification of the unknown parameter, while

the part of the covariance matrix related to the unknown parameter is minimized

as shown in Fig. 5.4(b). The error in actual and estimated value of state and

parameter is brought to zero as shown in Fig. 5.4(c) which corresponds to a very

good identification of the parameter. The almost random sequence of control is

shown in Fig. 5.4(d).

5.1.1.1.3 x0 = −4, x̂0 = −3.5, θ̂0 = −0.5 Another possibility to see the effec-

tiveness of the proposed algorithm is to consider the system with an initial value
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in region 1, where (due to the lack of information on the system state) the mea-

surement is not reliable. In order to gain information on the uncertain parameter,

we expect the state xk to be brought to region 2.
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Figure 5.5: x0 = −4, x̂0 = −3.5, θ̂0 = −0.5, α = 0

In Fig. 5.5(a), it is shown that the system trajectory moves in fact to the region

2 (which is the desired system behavior). In region 2, a random behavior of

the state xk is shown which results in the identification of the parameter. The

covariance matrix related to the unknown parameter is not minimized until the

state xk is in region 1. As the state xk enters region 2, the part of the covariance

matrix related to the identified parameter is minimized to zero which results in

perfect identification of the parameter as shown in Fig. 5.5(b). The estimation

error for both state and unknown parameter is minimized to zero as represented
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in Fig. 5.5(c) which also refers to state and parameter estimation. The sequence

of control to achieve the desired identification performance is shown in Fig. 5.5(d).

5.1.1.2 Case 2: Classical Optimal Control Problem (α = 1)

In order to achieve some desired control performances, the trade-off factor α = 1

is selected in the general cost function given in (4.5) to solve a classical optimal

control design problem. The process cost is given as

Jprock =
[
N−1∑
`=1

ρ`(x̄k+` − x?k+`)2 + γ`(ūk+`)2
]

+
[
ρN(x̄k+N − x?k+N)2 + γN(ūk+N)2

]
(5.4 )

where x?k is the desired reference trajectory, ρ`, γ`, ρN and γN are positive scalars

used to weight the transition and terminal cost related to state vector and control

input respectively. The control objective is to track some desired reference tra-

jectories starting from any initial conditions regardless of the information on the

unknown parameter. The process cost given in (5.4) involves a cost related to the

system trajectory (xk − x?k)2 which is minimized over a control horizon of N = 30

future steps. Simulations are performed with different initial conditions to show

the effectiveness of the proposed algorithm.

5.1.1.2.1 x0 = 4, x̂0 = 4.5, θ̂0 = −0.5, x?k = 0, k = 1, 2, . . . The system is

initialized with an initial value in region 2 where it is possible to have useful

measurements of the state xk. The control objective is to regulate the system to

the origin.
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Figure 5.6: x0 = 4, x̂0 = 4.5, θ̂0 = −0.5, α = 1, x?k = 0

As the measurement on the state xk is available on the initial value, it is clear

from Fig. 5.6(a) that the system is regulated to the desired reference x?k = 0 with

a perfect estimate of the state. At the initial condition, it is possible to identify

the parameter; thus, the identified value of the parameter moves to the true value

for few iterations but as the state xk reaches the origin (where information is not

reliable), the value of the identified parameter remains constant for rest of the

iterations. The cost related to the covariance matrix of the unknown parameter

is not minimized which results in poor identification of the parameter as shown

in Fig. 5.6(b). As the state is perfectly estimated, the error in state estimation exk
goes to zero but the error in the actual and estimated value of the parameter eθk
is not brought to zero as shown in Fig. 5.6(c). The tracking error exref is shown in
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the same figure, which represents a perfect tracking of the desired reference signal

x?k = 0. The control input is shown in Fig. 5.6(d), which shows that a maximum

control is generated to bring the system to desired reference trajectory and as the

desired objective is achieved, the control effort is brought to zero.

5.1.1.2.2 x0 = −4, x̂0 = −3.5, θ̂0 = −0.5, x?k = 0, k = 1, 2, . . . In this scenario,

the system starts from an initial condition in region 1 where it is difficult to

estimate the state and parameter. As α = 1, the control objective is to regulate

the state xk to the origin (x?k = 0) irrespective of the information gain on the

unknown parameter.
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Figure 5.7: x0 = −4, x̂0 = −3.5, θ̂0 = −0.5, α = 1, x?k = 0
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Indeed, the state xk regulates to the origin as shown in Fig. 5.7(a) with a poor

estimate of the state for first few iterations but the estimate improves as the

trajectory reaches the origin for rest of the iterations. At the initial value, due

to lack of available information on the measurement, it is not possible to identify

the parameter. Since, the state xk remains in region 1 for all the iterations, the

parameter is poorly identified and a constant value of the parameter is shown in

Fig. 5.7(b). The part of the covariance matrix related to the unknown parameter

is shown in the same figure which is consistent with the fact that the cost J infok

is not minimized. The error in the state estimation exk is brought to zero after

some iterations. The error in parameter identification eθk persists which indicates

a poor parameter identification as shown in Fig. 5.7(c). The tracking error exref
goes to zero as shown in the same figure which corresponds to the regulation of

the x̂k to the origin. The control effort is shown in Fig. 5.7(d). The identification

of the parameter could have been better if the desired trajectory was in the region

2. Simulations are performed also for a case in which system trajectory starts

from x0 = −4 and track the desired reference trajectory x?k = 4, k = 0, 1, . . . . The

identification of the parameter is much better than the above discussed case (due

to shortage of space, the results are not presented).

5.1.1.2.3 x0 = 4, x̂0 = 4.5, θ̂0 = −0.5, x?k = −4, k = 1, 2, . . . It is interesting to

see the performance of the proposed scheme in terms of tracking a reference signal

x?k = −4 in region 1, where it is not possible to measure the state reliably. The

system is initialized in region 2.
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Figure 5.8: x0 = 4, x̂0 = 4.5, θ̂ = −0.5, α = 1, x?k = −4

Fig. 5.8(a) shows that the state xk tracks the desired reference signal x?k in some

iterations. After tracking the reference signal, due to poor information on the

unknown parameter (as shown in Fig. 5.8(b)), also the state estimate becomes

poor as entering region 1 EKF relies almost only on the prediction. The cost

related to the covariance matrix of the identified parameter is not minimized as

shown in Fig. 5.8(b) which results in poor parameter identification. The control

effort is generated as shown in Fig. 5.8(d).

5.1.1.2.4 x0 = 0, x̂0 = 0.5, θ̂0 = −0.5, x?k = −4, k = 1, 2, . . . The problem

of poor state and parameter estimates in the previous case is addressed here by

identifying the parameter first and once the information on the unknown parameter
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is available, the desired reference trajectory is tracked perfectly. The simulations

are performed for T = 600 iterations. For the first 300 iterations, the active

parameter identification is performed setting α = 0, then the desired reference

trajectory is tracked for the next 300 iterations by setting α = 1 in the cost that

is minimized.
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Figure 5.9: x0 = 0, x̂0 = 0.5, θ̂0 = −0.5, x?k = −4

In Fig. 5.9(a), it can be seen that the state trajectory xk shows a quasi-random

behavior for first 300 iterations consistent with the control objective of parameter

identification (α = 0). In this first phase, the trajectory moves to region 2 where

the measurement on xk is reliable and it is possible to identify the parameter

correctly. For k > 300, as (α = 1), the tracking performance improves. In

Fig. 5.9(b) it is shown that the parameter identification is achieved and the cost
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related to covariance of the identified parameter is minimized. The reference

tracking of desired signal x?k = −4 is shown in Fig. 5.9(a). The error in state and

parameter estimation is shown in Fig. 5.9(c) which is minimized indicating a very

good estimate of state and parameter. The reference tracking error is also brought

to zero as shown in Fig. 5.9(c). The sequence of control for this case is shown in

Fig. 5.9(d).

5.1.1.3 Example Summary

The problem of OID for the active parameter identification of a toy example was

addressed. The problem was formulated in a combined EKF/NMPC framework,

where EKF was used for system identification of nonlinear dynamic system and

on the basis of the identified information, an OID problem was solved in NMPC

framework. The problem was formulated in a receding horizon context, where a

trade-off parameter α was introduced to weight between the process cost and infor-

mation cost. The proposed strategy was implemented (in simulations) on a simple

toy example and the simulation results were presented to show the effectiveness of

the proposed methodology.

5.1.2 3-DOF Mobile Robot Model

5.1.2.1 Overview

The dynamics of two-wheeled mobile robot (2-DOF) is similar to that of an in-

verted pendulum on a wheeled cart. The 3-DOF model of two-wheeled mobile

robot has an extra degree of freedom which incorporates the extra dynamics of

the heading angle. It is a widely used control design platform for researchers, both

from academia and industry [212–214]. To understand the dynamic equations of

the system, the complete nomenclature, list of symbols and their values are given

is Table 5.1. The nonlinear equations are taken from [1] which are derived from

Fig. 5.10 in which the side and plane view of the mechanical model of two-wheeled

robot is shown.
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Figure 5.10: Side-view and Plane-view of two wheeled Robot

Symbol Parameter Value Unit

mb Mass of the main body of robot 0.6 kg

mw Mass of each wheel 0.13 kg

L Distance of the center of mass

from the wheel axle 0.20 m

R Radius of each wheel 0.106 m

Jψ Body pitch inertia moment 0.63 kgm2

Jφ Body yaw inertia moment 1.12 kgm2

G Gravitational acceleration 9.81 m
s2

D Distance between the center of the

wheels axis C and the center of gravity G 0.212 m

φ Pendulum tilt angle rad

ψ Yaw angle (orientation of the robot) rad

xl & xr Left and right wheel position m

τ1 & τ2 Torque on the two wheels Nm

Table 5.1: List of Parameters based on [1]

5.1.2.2 Equations of Motion

The 3-DOF dynamic model of two-wheeled mobile robot has six states: linear

position x, linear velocity ẋ, yaw/heading angle ψ, yaw rate ψ̇, pitch angle φ and
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pitch rate φ̇. It is assumed that the robot can move in any possible direction on

plane by changing the heading angle. The input to the system is torque τ1 and τ2

which is applied to both wheels. It is assumed that the wheels of the robot will

always remain in contact with the ground and there is no slip or cornering force

on the wheel. To express the system in general form of (4.1), it is assumed that

x1 = x, x2 = ẋ, x3 = ψ, x4 = ψ̇, x5 = φ, x6 = φ̇ and used the Euler approximation

to rewrite the nonlinear equations discussed in [1] in discrete time nonlinear system

equations as

x1k+1 = x1k + δtx2k (5.5 )

x2k+1 = x2k + δt

[
mbd sin x5k(mbd

2cos2x5k − (mbd
2 + Jφ))

m2
bd

2 cos2 x5k − (3mw +mb)(mbd2 + Jφ) ẋ
2
3k+

m2
bgd

2

m2
bd

2 cos2 x5k − (3mw +mb)(mbd2 + Jφ) sin x5k cosx5k+

(mbd
2 + Jφ)(mbd sin x5k)

m2
bd

2 cos2 x5k − (3mw +mb)(mbd2 + Jφ) ẋ
2
5k+

mbdR cosx5k + (mbd
2 + Jφ)

m2
bd

2 cos2 x5k − (3mw +mb)(mbd2 + Jφ)(τ1 + τ2)
]

(5.6 )

x3k+1 = x3k + δtx4k (5.7 )

x4k+1 = x4k + δt

[
− (mbd

2 sin x5k cosx5k)
mw(3L2 + 1

2R
2) +mbd2 sin2 x5k + Jψ

ẋ3k ẋ5k−

L

R(mw(3L2 + 1
2R

2) +mbd2 sin2 x5k + Jψ)(τ1 − τ2)
]

(5.8 )

x5k+1 = x5k + δtx6k (5.9 )

x6k+1 = x6k + δt

[
(3mwmbd

2 sin x5k cosx5k)
m2
bd

2 cos2 x5k − (3mw +mb)(mbd2 + Jφ) ẋ
2
3k−

(3mw +mb)
m2
bd

2 cos2 x5k − (3mw +mb)(mbd2 + Jφ)mbgd sin x5k+

3mwmbd
2 sin x5k cosx5k

m2
bd

2 cos2 x5k − (3mw +mb)(mbd2 + Jφ) ẋ
2
5k−

R(3mw +mb) +mbd cosx5k
R(m2

bd
2 cos2 x5k − (3mw +mb)(mbd2 + Jφ))(τ1 + τ2)

]
(5.10 )

For simplicity, we have assumed that only the mass of the robot body θ = mb is
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an unknown parameter whose value is estimated together with the state vector

components. For a detail discussion on the above model, readers are encouraged

to see [1] and the references therein. It is assumed that the linear velocity x2k ,

yaw angle x3k and pitch angle x5k are measurable and the information about the

other states are not directly available.

5.1.2.3 Proposed Framework

For the case of 3-DOF two-wheeled mobile robot model, the simulations are per-

formed for three cases by selecting different values of trade-off parameter α.

• Active parameter identification (α = 0).

• Classical optimal control problem (α = 1).

• Both active parameter identification and “classical” optimal control problem

(α = 0.1)

5.1.2.4 Control Strategy

The classical process cost Jprock given in (4.5) is defined for this particular case as

Jprock = Jproctran + Jprocterm (5.11 )

where Jprock is the total process cost which consists of the transition cost Jproctran

and the terminal cost Jprocterm. The transition cost is computed at every sampling

instance for ` = k + 1, . . . , k + N − 1 while the terminal cost is computed at

` = k +N . The transition cost is given as

Jproctran =
N−1∑
`=0

[
ρ`x2

(
(x̄2k+` − x2d)2 + ρ`x4

(x̄4k+` − x4d)2 + ρ`x5
(x̄5k+` − x5d)2

)

+ γ`

(
(τ̄1k+`)2 + (τ̄2k+`)2

)]
(5.12 )
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where ρ`x2
, ρ`x4

and ρ`x5
are positive scalars and used to weight the cost related

to linear velocity, yaw rate and pitch angle respectively. The positive scalars γ`
are used to weight the cost on the sequence of control inputs. The terminal cost

is given as

Jprocterm =
[(
ρNx2

(x̄2k+N − x2d)
2 + ρNx4

(x̄4k+N − x4d)
2 + ρNx5

(x̄5k+N − x5d)
2
)

+ γN

(
(τ̄1k+N )2 + (τ̄2k+N )2

)]
(5.13 )

where ρNx2
, ρNx4

, ρNx5
and γN are positive scalars used to weight the cost related to

linear velocity, yaw rate, pitch angle and control effort respectively at every sampling

instance l = k +N . The information cost J infok defined in (4.5) is given as:

J infok = E
[
N−1∑
`=1

κl trace(P̄ θθk+`|k+`) + κN trace(P̄ θθk+N |k+N )
]

where, κl and κN are the positive scalars used to weight the transition cost and terminal

cost respectively. As it is important to keep some states of the system in bound, penalty

functions (soft constraints) on the desired states are introduced as

Jconsk =
[N−1∑
`=0

βl Ξl(x̄1k+` , x̄3k+` , x̄5k+`) + βN ΞN (x̄1k+N , x̄3k+N , x̄5k+N )
]

where βl and βN are positive tunable parameters used to weight different penalty func-

tions on the states.

5.1.2.5 Simulation Results

It is intended to keep the robot in closed region (physical constraint) which imposes a soft

constraint on the robot position as x1k = [max{(x̄1 − x1max), (x1min − x̄1), 0}]2, where

x1max = +3m and x1min = −3m. To avoid a big change in the heading angle of the robot,

81



a penalty function is imposed as x3k = [max{(x̄3 − x3max), (x3min − x̄3), 0}]2, where

x3max = π/2 rad and x3min = −π/2 rad. Also, it is important to keep the pitch angle x5k

in a bound which is important to keep the robot vertically stable. The penalty function is

imposed on the pitch angle x5k = [max{(x̄5 − x5max), (x5min − x̄5), 0}]2, where x5max =

π/4 rad and x5min = −π/4 rad. It is also intended to keep the control sequences within

a desired bound; hence a maximum (τmax = +50Nm) and minimum (τmin = −50Nm)

bound is imposed on torques applied to both the wheels. The initial condition for the

true system is chosen as x0 = [0 0 π/18 0 π/6 0]T and the mass of the robot body

(which is assumed unknown parameter) is mb = 0.6kg. The a-priori estimates are

x̂0 = x0 + [0.2 0.2 0.1 0.1 0.1 0.1]T and θ̂0 = mb + 1. The simulations are performed for

a control horizon of N = 30.

5.1.2.5.1 Active Parameter Identification (α = 0) As the control objective

is to obtain maximum information from the system, by acting on the trade-off factor

α = 0, the problem is addressed as an optimal experiment design problem.

0 50 100 150
0

1

2

θ θ̂k|k

0 50 100 150
0

0.5

1

P
θθ

k

(a) Identified Parameter & Covariance Matrix (b) System Response with Constraints

The identified parameter and the part of the covariance matrix related to the identified

parameter is shown in Fig. 5.11(a). It is shown that covariance matrix is minimized

which results in a perfect identification of the parameter. The problem of avoiding

the robot to go beyond the penalty margins are achieved by the introduction of soft

constraints on the position x1k , yaw angle x3k and the pitch angle x5k . It is shown in

Fig. 5.11(b) that all the states are within the desired bounds. As the control objective
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Figure 5.11: Active Parameter Identification (α = 0)

is to identify the parameter, almost random control sequences are generated as shown

in Fig. 5.11(c) which are also within the desired bound.

5.1.2.5.2 Classical Optimal Control Problem (α = 1) In order to achieve

some desired system performance, the trade-off parameter α = 1 is selected in the general

cost function given in (4.5). The control objective is to stabilize the robot in vertical

upward position which corresponds to bring the initial pitch angle x5k = π/6 rad to the

desired reference pitch angle x5d = 0 rad. It is also desirable to bring the initial yaw

rate x4k = 5 rad/sec to the desired value x4d = 0 rad/sec and track the reference linear

velocity x2d = 2 m/sec starting from an initial value of x2k = 0 m/sec.

It is shown in Fig. 5.12(a) that as the pitch angle x5k is brought to its desired value x5d ,

the linear velocity x2k is changed from its initial value and an increase is shown which

corresponds to stabilizing the robot. The yaw rate x4k is also brought to zero from its

initial value to achieve the desired control performance. It is shown that the robot has

tracked the desired linear velocity and also brought the yaw rate and pitch angle to zero

to stabilize the robot in a vertically upward position. The EKF has tried to estimate

the unknown parameter θ as shown in Fig. 5.12(b) but it can be seen that a constant

biasing is always there. The covariance matrix related to the identified parameter is not

minimized to zero which results in poor identification of the parameter. The tracking

error between the estimated states x̂2k , x̂4k , x̂5k and the desired reference trajectories

x2d , x4d , x5d are shown in Fig. 5.12(c). All the three estimated states tracks the desired
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Figure 5.12: Classical Optimal Control Problem (α = 1)

trajectories perfectly and the steady state error is brought to zero. The sequence of

control inputs are shown in Fig. 5.12(d), which shows that the control effort is brought

to zero as the desired reference trajectories are tracked.

5.1.2.5.3 Trade-off between Identification and Control (α = 0.1) In this

case, the choice of the trade-off weight α should guarantee to achieve both the parameter

identification and control performance. The general cost function given in (4.5) is used

to minimize both information cost J infok and the process cost Jprock . This choice of α

will weight more to the information cost as compared to the process cost.

It is shown in Fig. 5.13(a) that the starting from a rest position, the robot achieve the

desired reference velocity x2d . As the control objective is to identify the parameter as

84



0 20 40 60 80 100
0

10

20

x̂2k
x2d

x2k

0 20 40 60 80 100
-10

0

10

x̂4k
x4d

x4k

0 20 40 60 80 100
-1

0

1

x̂5k
x5d

x5k
x5cons

(a) Reference tracking x2k
, x4k

& x5k

0 20 40 60 80 100
0

1

2

θ θ̂k|k

0 20 40 60 80 100
0

0.5

1

P
θθ

k
80 90 100

0

0.01

0.02

(b) Identified Parameter & Covariance Matrix

0 20 40 60 80 100
-5

0

5

10

15

20

e
x2k e

x4k e
x5k

(c) ex2k = x̂2k
− x2d

, ex4k = x̂4k
− x4d

, ex5k = x̂5k
−

x5d

0 20 40 60 80 100
-50

-40

-30

-20

-10

0

10

20

τ1 τ2

(d) Torque τ1 and τ2

Figure 5.13: Trade-off between identification and control (α = 0.1)

well, the linear velocity changes rapidly before reaching the desired value. The yaw rate

x4k is also brought to zero from an initial value. The robot is stabilized in a vertically

upward position and the initial pitch angle is brought to zero. The identified parameter

and the covariance matrix related to the identified parameter are shown in Fig. 5.13(b)

which indicates that the parameter is tracked better than the previous case and the

cost related to covariance matrix is minimized. The tracking error in the different state

estimates and the respective desired reference trajectory are shown in Fig. 5.13(c) which

indicates that the error are minimized to zero. The sequence of control applied to the

two wheels is shown in Fig. 5.13(d).
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5.1.3 Example Summary

The problem of OID for the active parameter identification of nonlinear dynamic system

was addressed. The problem was formulated in a combined EKF/NMPC framework,

where EKF was used for system identification of nonlinear dynamic system and on the

basis of the identified information, an OID problem was solved in NMPC framework.

The A-optimality criterion was proposed as a measure of information on the unknown

parameter which tends to minimize the trace of the covariance matrix related to the

identified parameter as the information cost. The problem was formulated in a receding

horizon context, where a trade-off parameter α was introduced to weight between the

process cost and information cost. The proposed strategy was implemented (in simu-

lations) on a 3-DOF two-wheeled mobile robot model and the simulation results were

presented to show the effectiveness of the proposed methodology.

5.2 Comparison Study for Proposed Framework

In order to show the comparison of the system identification results obtained by the

extended Kalman filter, we have tried to use the UKF or GSF as the identification

strategy instead of EKF. The comparison among the three identification strategies is

made by simulating a 2-DOF two-wheeled mobile robot model for different scenarios

with different initial conditions and the obtained results are compared on the basis of

the identification performance and achieved desired system characteristics.

5.2.1 2-DOF Mobile Robot Model

Two-wheeled mobile robot has the same dynamics as that of a inverted pendulum on

a wheeled cart. It serves as a great platform for control design experiment and is

widely studied by many researchers [212–214]. In this work, we have tried to use the

2-DOF model of two-wheeled robot which has tendency to move on a straight line

and the control objective is to stabilize the robot in vertical upward position and the

identification objective is to estimate the unknown mass of the robot body (unknown

parameter).
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Parameter Symbol Value
Rotation Angle of the Chassis θp rad

Mass of Wheel connected to both
sides of the robot Mw 0.03 kg

Mass of the Robot’s chassis Mp 0.6 kg
Radius of the Wheel r 0.04 m

Nominal terminal Resistance R 6.69 Ω
Height of the Robot H 0.144 m

Dist. between z-axis and COG of the Robot L H
2

Moment of Inertia of the wheels Iw
1
2Mwr

2kgm2

Moment of Inertia of the Robot’s chassis Ip 0.0041kgm2

Back emf constant ke 0.268 V.s
rad

Torque constant km 0.317 Nm
A

Applied Terminal Voltage Va V

Table 5.2: List of Parameters based on [2]

5.2.1.1 Overview

To understand the dynamic equations of the system, the complete nomenclature, list of

symbols and their values are given is Table 5.2. The nonlinear equations are derived

from Fig. 5.10 in which the side view of the mechanical model of two wheeled robot is

shown.

5.2.1.2 Equations of Motion

The dynamic equations of two-wheeled mobile robot are presented for linear motion case

in which it is assumed that the robot can move only in a straight line. The dynamics

related to the linear position x, linear velocity ẋ, angular position ψ and angular velocity

ψ̇ are considered in the model. The input to the system is voltage Va which is applied

to both wheels. It is assumed that the wheels of the robot will always remain in contact

with the ground and there is no slip or cornering force on the wheel. The nonlinear

equations of motion for a two-wheeled mobile robot have the following form

−MpLẍ cosψ = (Ip +MpL
2)ψ̈ − 2kmke

Rr
ẋ+ 2km

R
Va +MpgL sinψ (5.14 )

2km
Rr

Va = (2Mw + 2Iw
r2 +Mp)ẍ+ 2kmke

Rr2 ẋ+MpLψ̈ cosψ −MpLψ̇
2 sinψ (5.15 )
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Figure 5.14: Side-view of two wheeled Robot

where x and ẋ are the linear position and linear velocity of the robot while ψ and ψ̇ are

the angular position and angular velocity of the robot chassis. The mass of the chassis

is assumed as the unknown parameter θ = Mp and used as the augmented state. To

express the system in general form of (4.1), it is assumed that x1 = x, x2 = ẋ, x3 = ψ

and x4 = ψ̇ and used the Euler method to rewrite the above equations in discrete time

nonlinear system equations as

x1k+1 = x1k + δtx2k

x2k+1 = x2k + δt

[2kmke
ΛrR2

[
(Ip +MpL

2) + rMpL cosx3k

]
x2k −

MpL(Ip +MpL
2)

Λ x2
4k sin x3k

− (MpL)2g

Λ sin x3k cosx3k −
2km
ΛrR

[
(Ip +MpL

2) + rMpL cosx3k

]
Va

]
x3k+1 = x3k + δtx4k

x4k+1 = x4k + δt

[ 2kmke
ΛrR2(Ip +MpL2)

[
ΛR−MpL cosx3k

[
(Ip +MpL

2) + rMpL cosx3k

]]
x2k

− MpgL

(Ip +MpL2) sin x3k + (MpL)2

Λ x2
4k cosx3k sin x3k + (MpL)3

Λ(Ip +MpL2) cos2 x3k sin x3k

− 2km
ΛrR(Ip +MpL2)

[
Λr −MpL cosx3k

[
(Ip +MpL

2) + rMpL cosx3k

]]
Va

]

Where, Λ = (Mpl cosx3k)2− (Ip +Mpl
2)(2Mw + 2Iw

r2 +Mp) and θ = Mp. The model has

also incorporated the dynamics of the DC motor attached to the wheels. For a more

detailed explanation, readers are encouraged to see [2] and the references therein. We
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are assuming the case in which only the angular velocity x4 = ψ̇ is measurable state and

the information about the other states are not directly available.

5.2.1.3 OID Strategy for Two-Wheeled Mobile Robot

This section presents the OID problem for a two-wheeled mobile robot in a combined

framework of nonlinear system identification technique and model predictive control.

As discussed in Section 5.2, the dynamic model has four states; two associated with the

linear motion and two with the angular position of the robot. The fifth component of

the augmented state is the unknown parameter which in this case is mass of the chassis

Mp. It is assumed that only the angular velocity x4 is measurable. In order to get the

information of the unmeasured states and parameter, we have used the EKF, UKF or

GSF as the identification strategy. This identified information is used in MPC framework

to generate an optimal control signal which guaranteed the desired system performance

subjected to control input. It is desirable for the two wheeled robot to achieve the vertical

self-balance position starting from some initial angle and after achieving the stability,

the linear velocity of the robot must be zero. For N future steps, cost related to the

control performance and the identified parameter is minimized over a finite horizon. The

general cost function given in (4.3) is formulated for the proposed strategy as

Jk(Ūk) = α

[
N−1∑
`=0

Γ
`
(x̄k+`, ūk+`, θ̂k|k) + ΓN (x̄k+N )

]

+ (1− α)E
[
N−1∑
`=1

Π
`
(P̄k+`|k+`) + ΠN (P̄k+N |k+N )

]
+ β

N∑
`=0

Ξ(x̄k+`) (5.16 )

Where, k is the current sampling instance and ` is the control horizon time index. For

the control horizon ` = 0, 1, . . . , N−1, the desired control vectors needed to be optimized

are given by ūk+`. The column vector Ūk ∈ <mN is defined as

Ūk
∆= col[ūk, ūk+1, . . . , ūk+N−1]

The states of the system evolve in the control horizon fulfilling the given equation
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x̄k+`+1 = f(x̄k+`, ūk+`, θ̄) ` = 0, 1, . . . , N − 1

where the parameter vector θ̄ inside the control horizon is assumed as θ̄ = θ̂k|k. The

certainty equivalence principle is used to compute the Jprock by setting x̄k = x̂k|k and

θ̄ = θ̂k|k, i.e. as their online estimates at time k . For the J infok , Monte-Carlo sim-

ulations are used to approximate the expectation by taking average of V realizations

obtained by assuming the initial state vector x̄k, initial parameter vector θ̄ and the ini-

tial covariance matrix P̄k|k equal to the x̂k|k, θ̂k|k and Pk|k respectively. The covariance

matrices P̄k+`|k+` associated with the states xk+` and the parameter vector θ are calcu-

lated by propagating the nonlinear identification algorithms inside the control horizon

` = 0, 1, . . . , N . The values of ˆ̄xk|k = x̂k|k−1, ˆ̄θk|k = θ̂k|k−1 and P̄k|k = Pk|k−1 are used as

the initial conditions for these identification techniques and the measurement sequence

are yielded (in simulations) as ȳk+` = h(x̄k+`). In (5.16), the transition cost at any time

instant k+` is represented by Γ`(·) for ` = 0, 1, . . . , N−1 while the terminal cost is given

as ΓN (·). The transition and terminal cost related to the information of the system is

given as Π
`
(·) and ΠN (·) respectively.

For the particular two-wheeled mobile robot case, the problem can be formulated simi-

larly to the general problem formulation discussed in (5.16). As the aim of the control

performance is to balance the robot vertically upward, a cost related to the angular

position x3 = ψ is included in the process cost. Also, a cost related to the control signal

is added to the cost function which tends to keep the input signal in desired control

region. The process cost for the proposed algorithm is given as

Jprock =
[
N−1∑
`=0

ρ`(x̄3k+` − xrk+`)
2 + γ`(ūk+`)2

]
+
[
ρN (x̄3k+N − xrk+N )2 + γN (ūk+N )2

]

where ρ`, γ`, ρN and γN are positive scalars for transition and terminal cost and help-

ful in achieving the desired control specifications and xr is the reference signal. The

information cost for the proposed algorithm is given by
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J infok = E
[
N−1∑
`=1

trace(P̄ θθk+`|k+`) + trace(P̄ θθk+N |k+N )
]

In order to keep the system states in bounds specially in the case of information retrieval

α = 0, a penalty function is imposed. The penalty function on x̄k is given as

Jconsk = β
N∑
`=0

Ξ(x̄3k+`)

where, β is the tunable weight on the penalty function which is given in this equation

Ξ(x3) = [max{(x̄3 − xmax), (xmin − x̄3), 0}]2. It is intended to keep the angular position

x3k in a bound [xmin, xmax] chosen as [+1rad,−1rad].

5.2.2 Simulation Results

Simulations are performed with three different identification strategies (EKF, UKF or

GSF) and results are presented in the subsequent sections. From (5.16), the proposed

OID problem can be simulated in three cases by acting on the value of trade-off param-

eter α. If the purpose of OID design is just to acquire information about the unknown

nonlinear system, the problem is solved for α = 0. For α = 1, the problem can be seen

as a classical stochastic optimal control problem to achieve the desired control perfor-

mance. For the third case, the trade-off parameter α can be tuned to a desired value

where one can achieve both identification and control performance. The simulations

are performed with a control horizon of N = 35. We have performed the observability

analysis using the Lie Algebra and checked the full rank condition for the observability

matrix. From the analysis, it is evident that the robot position is unobservable.

The detailed discussion on the three identification strategies (EKF, UKF and GSF)

was given in Chapter 3. We have used EKF as the principle strategy for our proposed

framework and then make a comparison with the other two strategies (UKF or GSF)

and to analyze the performance of our proposed scheme in terms of system identification

and achieving the desired control performance.
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5.2.2.1 Extended Kalman Filter

Simulations are performed with EKF as the identification strategy in the proposed frame-

work and results are presented in this section. Three cases are simulated i.e, α = 0

corresponds to the identification of the parameter, α = 1 corresponds to solving a clas-

sical optimal control problem in order to achieve some desired control performances and

α = 0.1 corresponding to the case, where one want to have both good identification and

control performance. Here, α = 0.1 means that more weight is given to the identification

cost as compared to the process cost.

5.2.2.1.1 Case 1: Identification Experiment (α = 0) This case corresponds

to the information retrieval only. It is important to keep the robot body in a specified

bound [−1rad,+1rad] when the information is retrieved. The constants ρl = 10−2,

γl = 10−3, ρN = 10−1, γN = 10−2, and β = 10−4 are chosen to improve the performance

of the designed controller. The initial condition for the true system is x0 = [1 0 0.5 0]T.

The a-priori estimates are x̂0|−1 = x0 + [0.1 0.1 0.1 0.1]T and θ̂0|−1 = Mp + 0.5.
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It is evident from the Fig. 5.15 the random behavior of the system states as the purpose

of the OID design is just to identify the parameter. As expected, a random input signal

is generated just to identify the information from the system as shown in Fig. 5.15(e). In

Fig. 5.15(a), the linear velocity is shown for both true and estimated value of the system

trajectories. x2k corresponds to the true value of the state while the x̂2k|k correspond

to the estimated value of the state. It can be seen that the states x2k and x3k are
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Figure 5.15: EKF: Parameter Identification α = 0

estimated perfectly as shown in Fig. 5.15(b) while the state x4k is measured hence a

perfect estimate is shown in Fig. 5.15(c). The constraints on state x2k ≤ 2m/s and

x3k ≤ ±π/4 are not violated which shows that the designed control has respected the

constraints as shown in Fig. 5.15(f). The identified parameter and the covariance matrix

P θθk is shown in Fig. 5.15(d). The parameter is estimated perfectly and the covariance

matrix related to the identified parameter is minimized which is used as the information

cost. The optimal input is visible in Fig. 5.15(e) which is as expected a random signal.

5.2.2.1.2 Case 2: Classical Optimal Control Problem (α = 1) In this

case, the aim of the OID design is to stabilize the robot vertically upward and bring the

robot velocity to zero. The simulations are performed with the same initial conditions

for both true and estimated value of the system and similar value of the parameters are
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used except the value of the γl = 10−5 and γN = 10−6 which corresponds to a strict

penalty function in the previous case.
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Figure 5.16: EKF: Classical Optimal Control Problem α = 1
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In Fig. 5.16, all the system states are shown for the case of α = 1. The robot is stabilized

vertically upward starting from an initial value of 0.5rad as shown in Fig. 5.16(b) and

as the robot stabilize itself, the linear velocity is also brought to zero as shown in

Fig. 5.16(a). The angular velocity also become zero as the robot stabilizes itself as

shown in Fig. 5.16(c). A particular case of regulation is shown in Fig. 5.16(d), it is

visible that the linear velocity of the robot is brought to zero as the robot stabilizes

itself vertically upward. As the control objective is to stabilize the robot vertically

upward, the parameter identification is subjected to a constant biasing. Starting from

the estimated value, the estimate converges towards the true parameter rapidly but a

constant biasing remains near the actual value of the parameter and the steady state

error persist. Here, convergence is somewhat slow but the estimation is perfect without

biasing. The optimal control signal is shown in Fig. 5.16(f) which indicates that in the

start in order to achieve the desired control performance, the control has a high value

but as the desired control specifications are achieved, the control efforts comes to zero.

5.2.2.1.3 Case 3: Trade-off between Identification and Control Per-

formance (α = 0.1) In this case, the aim of the OID design is to have a trade-off

between the parameter identification and the desired control performance. It is desirable

to identify the parameter as well as stabilize the robot vertically upward. Simulations

are performed with the same initial conditions for both true and estimated system and

similar values of the parameters are used.

It is shown in Fig. 5.17 that both identification and control performance are achieved.

The trade-off parameter (α = 0.1) is selected to weight the identification cost more as

compared to the process cost. It is shown in Fig. 5.17(a) that as the robot is stabilized

vertically upward, the linear velocity is brought to zero and the estimate of the state x2k

is also perfect. The estimate of the pitch angle x3k is poor as shown in Fig. 5.17(b) which

is due to the trade-off between the identification of the parameter and state. The robot

is brought to its vertical position starting from an initial value as shown in Fig. 5.17(d).

It is also shown that the linear velocity is also zero when the robot is stabilized vertically

upward. The identification of the parameter and the covariance matrix related to the

identified parameter is shown in Fig. 5.17(e), which indicates a perfect identification of

the parameter. The control sequence is shown in Fig. 5.17(f).
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Figure 5.17: EKF: Trade-off between Identification and Control Performance
α = 0.1
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5.2.2.2 Unscented Kalman Filter

In order to have a comparison of the results in terms of identification of the parameter

and control performance, we have performed simulations with unscented Kalman Filter.

UKF is used as the identification strategy in the proposed framework and results are

presented in this section. Simulations are performed for same three cases i.e, α = 0

corresponds to the identification of the parameter, α = 1 corresponds to solve a classical

optimal control problem in order to achieve some desired control performance and α =

0.1 corresponds to the case, where we want to have both good identification and control

performance.

5.2.2.2.1 Case 1: Identification Experiment (α = 0) We have performed

the simulations with the same initial conditions and the control objective is to identify the

parameter. In order to make a comparison, we have analyzed the errors in identification

of the parameter and achieved control performance which is presented in later sections.

0 20 40 60 80 100
-1

-0.5

0

0.5

1

1.5

2

x2k
x̂2k|k

(a) Linear Velocity

0 20 40 60 80 100
-1

-0.5

0

0.5

1

1.5

x3k
x̂3k|k

(b) Angular Position

In Fig. 5.18(a), it is shown that in order to identify the parameter, the robot is moved

randomly which results in random linear velocity. It can be seen that the linear ve-

locity is estimated perfectly. Similarly the angle of the robot body x3k is estimated

perfectly as shown in Fig. 5.18(b). The identified parameter and its covariance is shown

in Fig. 5.18(d) which shows a perfect estimate of the parameter but as compared to the

results obtained in EKF, it is little slow in terms of number of iterations. The constraints

are satisfied here as well as shown in Fig. 5.18(f) and the random sequence of control is
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Figure 5.18: UKF: Parameter Identification α = 0

shown in Fig. 5.18(e). The mean square error comparison between the EKF and UKF

results is presented in later section.

5.2.2.2.2 Case 2: Classical Optimal Control Problem (α = 1) In this

case, the control performance is evaluated on the basis of reference tracking by the

proposed framework. It is desirable to bring the linear velocity to zero and stabilize the

robot body to vertically upward position. Simulations are performed with same initial

conditions.
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Figure 5.19: UKF: Classical Optimal Control Problem α = 1

The linear velocity x2k is shown in Fig. 5.19(a) which indicates perfect estimation. It is

99



brought to zero again as the robot stabilize itself as shown in Fig. 5.19(d). The parameter

is identified with a constant biasing (poor identification) and covariance matrix related

to identified parameter is not minimized. The sequence of control is given in Fig. 5.19(f)

which shows that the control effort is brought to zero as the robot is stabilized vertically

upward. The error comparison is given in later section.

5.2.2.2.3 Case 3: Trade-off between Identification and Control Per-

formance (α = 0.1) In this case, the aim of the OID design is to have a trade-off

between the parameter identification and the desired control performance. Simulations

are performed with similar initial conditions.
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The results obtained in this case is similar to the one in EKF case. The linear veloc-

ity x2k , pitch angle of the robot body x3k and the angular velocity x4k are shown in
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Figure 5.20: UKF: Trade-off between Identification and Control Performance
α = 0.1

Fig. 5.20(a), Fig. 5.20(b) and Fig. 5.20(c) respectively which represents that these states

are estimated perfectly. The pitch angle is brought to zero (vertical upward position)

which was the desired control objective as shown in Fig. 5.20(d). The perfectly identi-

fied parameter and the covariance matrix related to the identified parameter is shown

in Fig. 5.20(e). The optimal control signal is given in Fig. 5.20(f).

5.2.2.3 Gaussian Sum Filter

In order to have a comparison of the results in terms of identification of the parameter

and control performance, we have performed simulations with Gaussian sum filter as

well. GSF is used as the identification strategy in the proposed framework and results

are presented in this section. For the simulation purpose, m = 10 Gaussian densities

are chosen to compute the estimate of the state and the covariance matrix. The detail

of the GSF algorithm is given in Section 3.2.3. The results are compared with the one

obtained in EKF and UKF case.

5.2.2.3.1 Case 1: Identification Experiment (α = 0) In this case, we have

performed the simulations with the same initial conditions as done in case of EKF

and UKF and the control objective is to identify the parameter. In order to make a

comparison, we have analyzed the error in identification of the parameter and achieved

control performance which is presented in later section.
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Figure 5.21: GSF: Parameter Identification α = 0

In order to identify the parameter, a random sequence of control is generated as shown
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in Fig. 5.21(e) which results in random linear velocity as shown in Fig. 5.21(a). The

state estimate in the case of linear velocity x2k is good but for the case of x3k , it is shown

that the estimate is not good in the start. The identified parameter and its covariance is

shown in Fig. 5.21(d) which shows a perfect estimate of the parameter. The comparison

in terms of mean square error between the three identification strategies is presented in

next section. The constraints are satisfied as shown in Fig. 5.21(f).

5.2.2.3.2 Case 2: Classical Optimal Control Problem (α = 1) In this

case, we want to bring the robot to vertically upward position and also the linear velocity

should be zero. It is desirable to achieve the reference tracking of the linear velocity

and bring the robot body to vertically upward position from given initial condition and

stabilize it there. Simulations are performed with same initial conditions.
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The linear velocity x2k is shown in Fig. 5.19(a) which indicates perfect estimation. It is

brought to zero as the robot stabilize itself as shown in Fig. 5.19(d). The parameter is

identified with a constant biasing (poor identification) and covariance matrix related to

identified parameter is not minimized. The sequence of control is given in Fig. 5.19(f)

which shows that the control effort is brought to zero as the robot is stabilized vertically

upward. The reference tracking of linear velocity x2k = 0 and the angle x3k = 0 is shown

in Fig. 5.22(d). The error comparison is given in later section.

5.2.2.3.3 Case 3: Trade-off between Identification and Control Perfor-

mance (α = 0.1) In this case, we have performed the simulations to achieve both
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Figure 5.22: GSF: Classical Optimal Control Problem α = 1

system identification as well as the control performance in terms of tracking the desired

reference signals. The results are compared with the one obtained in case of EKF and

UKF. Simulations are performed with similar initial conditions.
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Figure 5.23: GSF: Trade-off between Identification and Control Performance
α = 0.1

The linear velocity x2k is estimated perfectly as shown in Fig. 5.23(a) while the pitch
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angle of the robot body x3k is estimated poorly in the start as shown in Fig. 5.23(b). The

pitch angle is brought to zero (vertical upward position) which was the desired control

objective as shown in Fig. 5.23(d) and also the linear velocity x2k is brought to zero.

The identified parameter and the covariance matrix related to the identified parameter

is shown in Fig. 5.23(e) which indicates that parameter is identified perfectly without

biasing. The optimal control signal is given in Fig. 5.23(f).

5.2.3 Mean Square Error Comparison: EKF, UKF and

GSF

In order to evaluate the performance of the three cases, the error in parameter identifi-

cation and error in reference tracking of the desired signal is presented here. The mean

square error values computed for all three estimation strategies and then compared to

show that EKF performs better than the UKF and GSF.
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Figure 5.24: Case α = 0: Error in Estimation of the State
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In Fig. 5.24, the error in the estimation of state and parameter is shown. The error e2ekf

represents the error computed in state x2k which is given as x2k − x̂2k|k using the EKF

strategy, while e2ukf represents the error in state x2k − x̂2k|k using the UKF algorithm.

Similarly, e2gsf represents the error in state x2k − x̂2k|k using the GSF method. For

all the other states, x3k , x4k and x5k , the error representation remain the same. It is

obvious in the estimation of the state that error due to EKF is reduced to zero quicker

than the other two strategies and also the parameter estimated using the EKF is better

as the error is minimized faster. The performance of GSF is poor as compared to other

two strategies.

For the case of α = 1, error is calculated for both estimation of the state and parameter

as well as error in reference tracking of the desired signals.
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Figure 5.25: Case α = 1: Error in Estimation of the State

It is shown in Fig. 5.25 that the error is minimized faster in case of EKF for all the three

states x2k , x3k and x4k . The error in parameter identification is also better in case of

EKF, while the GSF has the worst result.
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Figure 5.26: Case α = 1: Error in Reference Tracking

It is also evident from the Fig. 5.26 that the error in reference tracking of the estimated

value of the state and the desired reference signal is minimized better in case of EKF

while GSF performs poorly. The comparison of mean square error for all the three cases

is given in tables below.

EKF

Error: Parameter Identification Error: Reference Tracking

e5k e2k e3k

α = 0 1.53e−04 1.69e−02 1.89e−02

α = 0.5 1.31e−03 1.87e−02 2.43e−02

α = 1 1.59e−02 4.82e−03 4.43e−03

Table 5.3: Mean Square Error: EKF
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UKF

Error: Parameter Identification Error: Reference Tracking

e5k e2k e3k

α = 0 4.32e−03 2.93e−02 3.53e−02

α = 0.5 1.60e−03 1.16e−02 1.02e−02

α = 1 2.34e−02 4.21e−03 4.01e−03

Table 5.4: Mean Square Error: UKF

GSF

Error: Parameter Identification Error: Reference Tracking

e5k e2k e3k

α = 0 5.74e−02 1.64e−01 3.50e−01

α = 0.5 5.89e−02 1.86e−01 8.06e−02

α = 1 6.66e−02 1.63e−01 1.13e−01

Table 5.5: Mean Square Error: GSF

5.3 Chapter Summary

In order to see objectivity and applicability of the proposed OID framework for active

parameter identification (presented in Chapter 4), we performed some simulations with

different numerical examples. This chapter presented all the numerical results and helped

the reader to understand the concepts presented in previous chapters of the dissertation.

A simple abstract example of a toy model was used to understand the objective of the

proposed framework. Later, a complex model of 3-DOF two-wheeled mobile robot was

chosen to show the performance of the proposed scheme on more complex systems. For

the identification purpose, EKF was used as the identification strategy in the proposed

framework and results obtained in simulations shows the effectiveness of the framework.

For the purpose of comparison, we simulated the 2-DOF robot model with two different

identification strategies, UKF and GSF. Simulation results were presented and a mean

square error comparison was made. The results shows that EKF performs better than

the other two strategies but both UKF or GSF can be used for more complex systems

where EKF performance degrade.
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Chapter 6

CONCLUSIONS, RECOMMENDATIONS AND

FUTURE WORK

“We have the duty of formulating, of summarizing, and of communicating our

conclusions, in intelligible form, in recognition of the right of other free minds

to utilize them in making their own decisions.”

– Ronald Fisher

In this work, the problem of OID for active parameter identification of nonlinear dynamic

system was addressed. The major focus of the work was on the design of such an optimal

excitation signals, that can yield maximal information from the unknown or uncertain

system and achieve some desired control performance. This chapter summarizes the

main contribution of the proposed work, some useful recommendations to address those

issues which were not done effectively and some suggestions for future work.

6.1 Conclusions

In this dissertation, the problem of OID for the active parameter identification of nonlin-

ear dynamic system was addressed as a novel strategy which combines the identification

strategy with model predictive control in a receding horizon framework. The problem

has been formulated in a combined EKF/NMPC framework (for comparison: UKF and

GSF also used), where EKF was used for system identification of nonlinear dynamic

system and on the basis of the identified information, an OID problem was solved in
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NMPC framework. A-optimality criterion was proposed as a measure of information

on the unknown parameter which tends to minimize the trace of the covariance matrix

related to the identified parameter as the information cost. The problem was formulated

in a receding horizon context, where a trade-off parameter α was introduced to weight

between the process cost and information cost. The proposed strategy was implemented

on different numerical examples and the results shown the effectiveness of the proposed

methodology.

In order to make a comparison of proposed strategy in terms of parameter identification,

we have used UKF and GSF as the identification strategy. The choice is motivated due to

the limitations of EKF for highly nonlinear and complex systems. The results obtained

with EKF provided the best identification of the parameter while UKF performance

was better than the GSF. As the complexity of these examples were not very high,

EKF performs exceptionally well than the other two. The results were presented and

mean square error comparison is also given to enlighten the performance in terms of

identification and achieving the desired control performance.

The numerical examples presented in this dissertation were chosen to show the effective-

ness and objectivity of the proposed work. The problem is addressed in two different

ways, i.e, active parameter identification (α = 0) and classical optimal control problem

(α = 1) by acting on the trade-off parameter. In order to have a greater understanding of

the proposed scheme, a simple abstract example of a toy model was chosen. Simulations

were performed for different initial conditions under different scenarios and the results

showed the effectiveness of the proposed framework. It was also desirable to see the

performance of the system on a more complex example like 3-DOF two-wheeled mobile

robot model. The performance of the proposed framework was considered in three cases

by altering the value of the trade-off parameter and results were presented to show the

effectiveness of the proposed framework. For the comparison of three strategies (EKF,

UKF and GSF), we used 2-DOF model of two-wheeled robot which was subjected to only

linear motion. The performance of the three cases were presented and the superiority of

the EKF over the other two strategies was shown in the results.
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6.2 Recommendations

After the successful completion of this thesis, some recommendations are made which

must be considered in future work.

• The proposed algorithm has applications in map building of unknown environment,

fault detection in different real life systems, identification and control of uncertain

disease in living beings along with robotic applications.

• The problem should be formulated carefully as it can effect the system perfor-

mance.

• The cost related to the system performance should be defined precisely.

• The performance of the dynamic system is improved by improving the accuracy

of the dynamic model.

• The constraints and bounds on the input and states of the system are of critical

importance. Hence, it should be defined with lot of care and knowledge on the

system.

• The computational cost must be minimized by using some parallel processing

architectures.

6.3 Open Problems

After going through some hard efforts to produce this research work, there are some

areas which are still open and need future attention.

• The first and obvious future work is to perform the implementation of the proposed

work on a real application like two-wheeled robot.

• It will be interesting to verify the performance of the proposed work while identi-

fying more than one parameter in the examples.

• For the implementation on real problems, the computational costs must be re-

duced. Some parallel processing strategies must be explored or by using some

high speed processors.

112



• It will be interesting to see the performance of algorithm with some other iden-

tification strategy like particle filters. But for this case, the optimality criterion

must be selected accordingly.
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Appendix A

Kalman Filter

Kalman filter (KF) is an optimal recursive algorithm for the state estimation of linear

systems. It is most widely used method for state estimation in control theory as it

produces the optimal estimate of the unknown or uncertain system in a sense that the

sum of the estimation error is minimized. The application of KF to different physical

systems is addressed in [68–72]. Consider a general discrete-time linear system of the

form

xk+1 = fkxk + gkuk + wk (A.1 )

yk = hkxk + vk (A.2 )

where k is the current sampling index, xk ∈ <nx is the state vector, uk ∈ <nu is the

control vector, and yk ∈ <ny is the output vector. The matrix fk ∈ <nx×nx is the

feedback matrix, gk ∈ <nx×nu is the input matrix and hk ∈ <ny×nx is the output

matrix. The terms wk and vk are process noise and observation noise with zero-mean

and covariances Qk and Rk respectively. The Kalman filter algorithm is divided in two

steps: prediction and update. The prediction step can be written as follow:

x̂k+1|k = fkx̂k|k + gkuk

Pk+1|k = fkPk|kf
T
k +Qk

The update equations are written as:
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ŷk+1|k = hk+1x̂k+1|k

Vk+1 = yk+1 − ŷk+1|k

Sk+1 = hk+1Pk+1|kh
T
k+1 +Rk+1

Wk+1 = Pk+1|kh
T
k+1S

−1
k+1

x̂k+1|k+1 = x̂k+1|k +Wk+1Vk+1 (A.3 )

Pk+1|k+1 = (I −Wk+1hk+1)Pk+1|k (A.4 )

The eq. (A.3) and eq. (A.4) represents the updated state estimate and updated covari-

ance matrix respectively. The one complete cycle of Kalman filter for linear systems is

shown in Fig. A.1.

Figure A.1: Kalman Filter for Linear Systems (one cycle)

As the paper is focused on the nonlinear discrete-time systems, different variants of

Kalman filter are used for the estimation of nonlinear systems.
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Appendix B

Gaussian Sum Filter: Filtering Estimates

For the sake of simplicity, we are assuming that Xk = [xk, θ]T represents the new aug-

mented state vector. The two filtering estimate equations are given as

X̂k|k =
m∑
i=1

αi,kX̂i,k|K (B.1 )

Pk|k =
m∑
i=1

αi,k
{
Pi,k|k + (X̂k|k − X̂i,k|k)(X̂k|k − X̂i,k|k)T} (B.2 )

The conditional density function of Xk computed at time k is given as sum of weighted

Gaussian distribution densities as:

p(Xk|Zk) =
m∑
i=1

αi,kN (Xk − X̂i,k|k, Pi,k|k) (B.3 )

=
m∑
i=1

αi,k(2π)−n/2
∣∣∣Pi,k|k∣∣∣−1/2

exp
{
−(1/2)(Xk − X̂i,k|k)TP−1

i,k|k(Xk − X̂i,k|k)
}

(B.4 )

Hence, the mean and covariance of xk can be computed as:
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X̂k|k = E(Xk|Zk)

=
∫
Xkp(Xk|Zk)dXk

=
∫
Xk

m∑
i=1

αi,kN (Xk − X̂i,k|k, Pi,k|k)dXk

=
m∑
i=1

αi,k

∫
XkN (Xk − X̂i,k|k, Pi,k|k)dXk

=
m∑
i=1

αi,kX̂i,k|k

The equation for the covariance matrix is given as

Pk|k = E
[
(Xk − X̂k|k)(Xk − X̂k|k)T|Zk

]
=
∫

(Xk − X̂k|k)(Xk − X̂k|k)Tp(Xk|Zk)dXk

=
∫

(Xk − X̂k|k)(Xk − X̂k|k)T
m∑
i=1

αi,kN (Xk − X̂k|k, Pi,k|k)dXk

=
m∑
i=1

αi,k

∫
(Xk − X̂k|k)(Xk − X̂k|k)TN (Xk − X̂k|k, Pi,k|k)dXk

=
m∑
i=1

αi,k

∫ [
(Xk − X̂i,k|k) + (X̂i,k|k − X̂k|k)

][
(Xk − X̂i,k|k) + (X̂i,k|k − X̂k|k)

]T

×N (Xk − X̂i,k|k, Pi,k|k)dXk

=
m∑
i=1

αi,k

(∫
(Xk − X̂i,k|k)(Xk − X̂i,k|k)TN (Xk − X̂i,k|k, Pi,k|k)dXk

+
∫

(Xk − X̂i,k|k)(X̂i,k|k − X̂k|k)TN (Xk − X̂i,k|k, Pi,k|k)dXk

+
∫

(X̂i,k|k − X̂k|k)(Xk − X̂i,k|k)TN (Xk − X̂i,k|k, Pi,k|k)dXk

+
∫

(X̂i,k|k − X̂k|k)(X̂i,k|k − X̂k|k)TN (Xk − X̂i,k|k, Pi,k|k)dXk

)

Recall that,

∫
XkN (Xk − X̂i,k|k, Pi,k|k)dXk = (X̂i,k|k − X̂k|k)(X̂i,k|k − X̂k|k)T
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Thus, one can write the final equation as

Pk|k =
m∑
i=1

αi,k

[
Pi,k|k + (X̂i,k|k − X̂k|k)(X̂i,k|k − X̂k|k)T

]
(B.5 )
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Appendix C

Sequential Unconstrained Minimization Technique
(SUMT)

Let the penalty parameter βk, for k = 1, 2, . . . be the increasing sequence such that

βk > 0 and βk+1 > βk. For every value of k, the problem is solved as

minimize {Jconsk (βk, xk) : xk ∈ <nx} (C.1 )

to obtain the optimum xk which satisfies the penalty function. It is assumed that for

all positive value of βk, the problem given in (C.1) has a solution. The steps taken to

solve the problem is given as:

• Initialize the parameters: Let at k = 0, the algorithm is initialized with the

penalty parameter β0, stopping parameter σ > 0 and growth parameter ρ > 1.

• Iterate the process: Let at k = 1, the cost Jconsk (βk−1, xk−1) is minimized. Call

the solution xk and check the violation of the constraints.

• Stopping Criteria: If the constraints are violated and the distance between xk

and xk−1 is smaller than the stopping parameter σ, i.e, ‖xk−1 − xk‖ < σ, stop the

iteration with xk be the optimal solution. Otherwise, update the value of penalty

parameter βk = ρβk−1 and repeat the iteration with xk and k = k + 1.
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