756 research outputs found

    Planetary protection efficiency by a small kinetic impactor

    Get PDF
    This paper re-examines the deflection concept with, arguably, the highest technological readiness level: the kinetic impactor. A baseline design for the concept with a 1,000 kg spacecraft launched from Earth is defined. The paper then analyses the capability of the kinetic spacecraft to offer planetary protection, thus, deflecting asteroids on a collision trajectory with Earth. In order to give a realistic estimate, the paper uses a set of more than 17 thousand Earth-impacting trajectories and has computed the largest asteroid mass that could be deflected to a sufficiently safe distance from Earth. By using the relative impact frequency of the different impact orbits, which can be estimated by modeling the asteroid population and the collision probability of the different impact geometries, a figure on the level of planetary protection that such a system could offer can be estimated. The results show that such a system could offer very high levels of protection, around 97% deflection reliability, against objects between 15 to 75 meters, while decreases for larger sizes

    Impact hazard protection efficiency by a small kinetic impactor

    Get PDF
    In this paper the ability of a small kinetic impactor spacecraft to mitigate an Earth-threatening asteroid is assessed by means of a novel measure of efficiency. This measure estimates the probability of a space system to deflect a single randomly-generated Earth-impacting object to a safe distance from the Earth. This represents a measure of efficiency that is not biased by the orbital parameters of a test-case object. A vast number of virtual Earth-impacting scenarios are investigated by homogenously distributing in orbital space a grid of 17,518 Earth impacting trajectories. The relative frequency of each trajectory is estimated by means Opik’s theory and Bottke’s near Earth objects model. A design of the entire mitigation mission is performed and the largest deflected asteroid computed for each impacting trajectory. The minimum detectable asteroid can also be estimated by an asteroid survey model. The results show that current technology would likely suffice against discovered airburst and local damage threats, whereas larger space systems would be necessary to reliably tackle impact hazard from larger threats. For example, it is shown that only 1,000 kg kinetic impactor would suffice to mitigate the impact threat of 27.1% of objects posing similar threat than that posed by Apophis

    Hazardous near Earth asteroid mitigation campaign planning based on uncertain information on fundamental asteroid characteristics

    Get PDF
    Given a limited warning time, an asteroid impact mitigation campaign would hinge on uncertainty-based information consisting of remote observational data of the identified Earth-threatening object, general knowledge of near-Earth asteroids (NEAs), and engineering judgment. Due to these ambiguities, the campaign credibility could be profoundly compromised. It is therefore imperative to comprehensively evaluate the inherent uncertainty in deflection and plan the campaign accordingly to ensure successful mitigation. This research demonstrates dual-deflection mitigation campaigns consisting of primary (instantaneous/quasi-instantaneous) and secondary (slow-push) deflection missions, where both deflection efficiency and campaign credibility are taken into account. The results of the dual-deflection campaign analysis show that there are trade-offs between the competing aspects: the launch cost, mission duration, deflection distance, and the confidence in successful deflection. The design approach is found to be useful for multi-deflection campaign planning, allowing us to select the best possible combination of missions from a catalogue of campaign options, without compromising the campaign credibility

    A comparative assessment of different deviation strategies for dangerous NEO

    Get PDF
    In this paper a number of deviation strategies for dangerous Near Earth Objects (NEO) have been compared. For each strategy (i.e. Solar Collector, Nuclear Blast, Kinetic Impactor, Low-thrust Propulsion, Mass Driver) a multi criteria optimisation method has been used to reconstruct the set of Pareto optimal solutions minimising the mass of the spacecraft and the warning time, and maximising the deviation. Then, a dominance criterion has been defined and used to compare all the Pareto sets. The achievable deviation at the MOID, either for a low-thrust or for an impulsive variation of the orbit of the NEO, has been computed through a set of analytical formulas. The variation of the orbit of the NEO has been estimated through a deviation action model that takes into account the wet mass of the spacecraft at the Earth. Finally the technology readiness level of each strategy has been used to compute a more realistic value for the required warning time

    Hazardous Near Earth Asteroid Mitigation Campaign Planning Based on Uncertain Information on Asteroid Physical Properties

    Get PDF
    Given a limited warning time, an asteroid impact mitigation campaign would hinge on uncertainty-based information consisting of remote observational data of the identified Earth-threatening object, general knowledge on near-Earth asteroids (NEAs), and engineering judgment. Due to these ambiguities, the campaign credibility could be profoundly compromised. It is therefore imperative to comprehensively evaluate the inherent uncertainty in deflection and plan the campaign accordingly to ensure successful mitigation. This research demonstrates dual-deflection mitigation campaigns consisting of primary and secondary deflection missions, where both deflection performance and campaign credibility are taken into consideration. The results of the dual-deflection campaigns show that there are trade-offs between the competing aspects: the total interceptor mass, interception time, deflection distance, and the confidence in deflection. The design approach is found to be useful for multi-deflection campaign planning, allowing us to select the best possible combination of deflection missions from a catalogue of various mitigation campaign options, without compromising the campaign credibility

    Towards Designing a Credible Hazardous NEA Mitigation Campaign of Dual-deflection Act

    Get PDF
    Given a limited warning time, an asteroid impact mitigation campaign would hinge on uncertainty-based information consisting of remote observational data of the identified Earth-threatening object, general knowledge on near-Earth asteroids, and engineering judgment. Due to these ambiguities, the campaign credibility could be profoundly compromised. It is therefore imperative to comprehensively evaluate the inherent uncertainty in deflection and plan the campaign accordingly to ensure successful mitigation. This research demonstrates dual-deflection mitigation campaigns consisting of primary and secondary deflection missions, where both deflection performance and campaign credibility are taken into consideration. The results of the dual-deflection campaigns show that there are trade-offs between the competing aspects: the total interceptor mass, interception time, deflection distance, and the confidence in deflection. The design approach is found to be useful for multi-deflection campaign planning, allowing us to select the best possible combination of deflection missions from a catalogue of various mitigation campaign options, without compromising the campaign credibility

    Design of a Formation of Solar Pumped Lasers for Asteroid Deflection

    Get PDF
    This paper presents the design of a multi-spacecraft system for the deflection of asteroids. Each spacecraft is equipped with a fibre laser and a solar concentrator. The laser induces the sublimation of a portion of the surface of the asteroid. The jet of gas and debris thrusts the asteroid off its natural course. The main idea is to have a swarm of spacecraft flying in the proximity of the asteroid with all the spacecraft beaming to the same location to achieve the required deflection thrust. The paper presents the design of the formation orbits and the multi-objective optimization of the swarm in order to minimize the total mass in space and maximize the deflection of the asteroid. The paper demonstrates how significant deflections can be obtained with relatively small sized, easy-to-control spacecraft.Comment: Advances in Space Research, 201

    On the deflection of asteroids with mirrors

    Get PDF
    This paper presents an analysis of an asteroid deflection method based on multiple solar concentrators. A model of the deflection through the sublimation of the surface material of an asteroid is presented, with simulation results showing the achievable orbital deflection with, and without, accounting for the effects of mirror contamination due to the ejected debris plume. A second model with simulation results is presented analyzing an enhancement of the Yarkovsky effect, which provides a significant deflection even when the surface temperature is not high enough to sublimate. Finally the dynamical model of solar concentrators in the proximity of an irregular celestial body are discussed, together with a Lyapunov-based controller to maintain the spacecraft concentrators at a required distance from the asteroid

    Evidence-based robust design of deflection actions for near Earth objects

    Get PDF
    This paper presents a novel approach to the robust design of deflection actions for Near Earth Objects (NEO). In particular, the case of deflection by means of Solar-pumped Laser ablation is studied here in detail. The basic idea behind Laser ablation is that of inducing a sublimation of the NEO surface, which produces a low thrust thereby slowly deviating the asteroid from its initial Earth threatening trajectory. This work investigates the integrated design of the Space-based Laser system and the deflection action generated by laser ablation under uncertainty. The integrated design is formulated as a multi-objective optimisation problem in which the deviation is maximised and the total system mass is minimised. Both the model for the estimation of the thrust produced by surface laser ablation and the spacecraft system model are assumed to be affected by epistemic uncertainties (partial or complete lack of knowledge). Evidence Theory is used to quantify these uncertainties and introduce them in the optimisation process. The propagation of the trajectory of the NEO under the laser-ablation action is performed with a novel approach based on an approximated analytical solution of Gauss’ Variational Equations. An example of design of the deflection of asteroid Apophis with a swarm of spacecraft is presented

    Interception and deviation of near Earth objects via solar collector strategy

    Get PDF
    A solution to the asteroid deviation problem via a low-thrust strategy is proposed. This formulation makes use of the proximal motion equations and a semi-analytical solution of the Gauss planetary equations. The average of the variation of the orbital elements is computed, together with an approximate expression of their periodic evolution. The interception and the deflection phase are optimised together through a global search. The low-thrust transfer is preliminary designed with a shape based method; subsequently the solutions are locally refined through the Differential Dynamic Programming approach. A set of optimal solutions are presented for a deflection mission to Apophis, together with a representative trajectory to Apophis including the Earth escape
    corecore