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ABSTRACT 

A solution to the asteroid deviation problem via a low-thrust strategy is proposed. This 

formulation makes use of the proximal motion equations and a semi-analytical solution of 

the Gauss planetary equations. The average of the variation of the orbital elements is 

computed, together with an approximate expression of their periodic evolution. The 

interception and the deflection phase are optimised together through a global search. The 

low-thrust transfer is preliminary designed with a shape based method; subsequently the 

solutions are locally refined through the Differential Dynamic Programming approach. A set 

of optimal solutions are presented for a deflection mission to Apophis, together with a 

representative trajectory to Apophis including the Earth escape. 

 

1. INTRODUCTION 

he ongoing panel discussion about asteroids aims 

at assessing the level of technology to detect, 

track, study and deviate potentially dangerous near 

Earth objects. Among the possible responses to an 

asteroid impact hazard, different deviation techniques 

have been identified, whose interaction with the 

asteroid can produce an impulsive change of its linear 

momentum (e.g. kinetic impactor, nuclear explosion) 

or a continuous momentum change by a low-thrust 

applied to the object (e.g. electrical/chemical engines 

or solar sails anchored to its surface, gravity tractor, 

mass drivers, solar collector, pulsed laser, enhanced 

Yarkovsky effect) [1]. One strategy would be to 

produce a sublimation of the surface material through 

a laser beam or a solar concentrator. This deflection 

strategy exploits the benefits of a slow-push 

technique and makes use of a free power source. 

In order to have an effective and efficient 

mitigation scheme, the total mass of the spacecraft 

into orbit and the warning time should be minimal for 

a given deviation. An optimal solution can be 

obtained by the integrated design of the interception 

phase (transfer from the Earth to the asteroid) and the 

deflection phase. 

This paper presents the design of missions of 

interception and deviation of Near Earth Objects 

(NEOs), through a low-thrust powered spacecraft and 

a solar concentrator strategy. The two phases of the 

mission are optimised together through a global 

search [2], over a wide range of launch dates and 

T 
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masses into space. Instead of using a single 

hypothetical mission case, a set of hundreds of 

solutions is found, each one representing a complete 

mission with a specific launch date and transfer time. 

Fixed the dry mass of the spacecraft at the asteroid 

interception, a set of Pareto optimal points is found 

according to three criteria: the achievable 

displacement of the asteroid at the point of Minimum 

Orbit Interception Distance (MOID), the time 

between the launch and the hypothetical impact and 

the propellant mass for the transfer trajectory. 

Reconstructing the set of all Pareto optimal solutions 

requires the evaluation of several tens of thousands of 

trajectories, thus the numerical computation of the 

low-thrust transfer trajectory of the spacecraft and of 

the deflected trajectory of the asteroid would be 

impractical. 

Since 1950 several authors have proposed 

analytical solutions to some particular cases of the 

low-thrust problem [3]-[7]. Kechichian [8] used an 

averaging technique to compute analytical solutions 

for orbit raising with constant tangential acceleration 

in the presence of Earth shadow, also considering the 

effects of the Earth oblateness. Gao and Kluever [9] 

adopted an averaging technique with respect to the 

eccentric anomaly, for continuous tangential thrust 

trajectories; the accuracy of their solution depends on 

the eccentricity. 

Other analytical solutions for low-thrust 

trajectories were studied by Petropoulos [10] who 

developed some analytical integrals to describe the 

secular evolution of the orbit of a spacecraft, subject 

to different thrust control laws. The rate of change of 

the orbital energy and the eccentricity are time-

averaged and reformulated introducing some elliptic 

integrals, which are valid for all initial eccentricity 

from slightly above zero.  

This paper uses a semi-analytical approach [11] to 

compute the displacement of the position of an 

asteroid at the MOID point, after a low-thrust 

deviation manoeuvre. The miss distance achieved 

with a given deviation action is computed 

analytically by means of the proximal motion 

equations [12],[13] expressed as a function of the 

orbital elements. The variation of the orbital 

parameters is then computed through Gauss’ 

planetary equations [14]. Note that the computation 

of the miss distance through the proximal motion 

equations can be adopted for any deviation strategy 

and represents an extension and a generalization of 

the methodologies proposed in previous works [15]-

[17] in which analytical formulae were derived to 

compute the deviation due to a variation in the orbital 

mean motion. 

The assumption for the analytical developments 

used in this paper is that the deflection strategy uses 

the Sun as a power source and therefore the thrust 

acceleration is inversely proportional to the square of 

the distance from the Sun. Furthermore, we focus our 

attention on the case in which the thrust is aligned 

with the tangent to the osculating orbit of the 

asteroid. 

In order to obtain an analytical solution for the 

variation of the orbital elements, Gauss’ equations are 

averaged over one orbital revolution. However, the 

required accuracy for the computation of the miss 

distance is higher than for the design of a generic 

low-thrust trajectory, hence, unlike other works [8]-

[10], also the periodic variation of the orbital 

elements is taken into account. In addition, the 

analytic integrals are updated with a one-period step 

to further improve the accuracy. 

The preliminary design of the low-thrust 

trajectory is performed through a shape based 

approach [18], which provides an estimation of the 

required propellant mass. As a second stage, an 

algorithm based on the Differential Dynamic 

Programming [19]-[21] is adopted for the refinement 

of the transfer solutions. This successive 

approximation technique applies recursively, 

backwards in time, Bellman’s principle of optimality 

in the neighbourhood of the nominal trajectory, 

finding an improved control law. In this way the large 

scale problem associated with the optimisation of a 

low-thrust trajectory is translated into a series of 

problems of small dimensions. 

Finally this paper presents a family of optimal 

solutions for a potential deflection mission to asteroid 

Apophis. 

2. ASTEROID DEVIATION PROBLEM 

Given the time of interception 
it  of a generic 

NEO, the objective is to maximise the minimum orbit 

interception distance from the Earth, by applying a 

low-thrust deviation action which consists in a 

continuous push on the asteroids centre of mass over 

a certain interval of time. In general, any deviation 

strategy generates a perturbation of the nominal orbit 

of the asteroid. The new orbit can be considered 

proximal to the unperturbed one (see Fig. 1). 
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Fig. 1 Slow-push deviation strategy. 

 

If   is the true anomaly of the NEO at the MOID 

along the unperturbed orbit and *     the 

corresponding latitude, we can write the variation of 

the position of the NEO, after deviation, with respect 

to its unperturbed position by using the proximal 

motion equations: 
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where 
rs , s  and 

hs  are the displacements in the 

radial, transversal and perpendicular to the orbit plane 

directions respectively, so that the deviation is 

 
T

r hs s s   r , and 21 e   . In a matrix 

form: 

  MOID MOIDt r A α  (2) 

 
T

a e i M       α  is the vector of 

the orbit element difference at the MOID between the 

perturbed and the nominal orbit, where M is the mean 

anomaly. When a slow-push deviation action is 

applied over the interval  i et t , being e MOIDt t  the 

time when the manoeuvre is ended, the total variation 

of orbital parameters is computed by integrating 

Gauss’ planetary equations: 
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 (3) 

The slow-push strategy provides an acceleration 

   
T

t n ht a a aa , here expressed in a tangential-

normal-binormal reference frame, such that 
ta  and 

na  are the components of the acceleration in the 

plane of the osculation orbit, along the velocity 

vector and perpendicular to it. Note that the 

derivative of M, in the 6
th

 equation of system (3), 

takes into account the instantaneous change of the 

orbit geometry at each instant of time  i et t t  and 

the variation of the mean motion due to the change 

the semi-major axis on the thrust arc. 

Said    
T

t a e i M α  the vector of 

the orbital parameters, we define: 
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the finite variation of the orbital elements with 

respect to the nominal orbit, in the interval  i et t , 

obtained form the numerical integration of Eqs. (3). It 

is important to point out that a a   , e e   , 

i i   ,    ,    , to be substituted in 

the proximal motion equations (1), whereas M  

must include also the phase shift between the Earth 

and the asteroid. Since the mean anomaly at the 

MOID on the perturbed and the nominal orbits are 

respectively: 

nominal 

orbit 

 

proximal 

orbit 
possible 

impact 

NEO 

interception 

 

low-thrust action 
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where 
pt  is the passage at the pericentre, we can 

conclude that the total variation in mean anomaly 

between the proximal and the unperturbed orbit is: 
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where 
in  is the nominal angular velocity and 

 
 

3en
a a




 
. 

At this point Eqs. (1) can be used to compute the 

consequent r . 

2.1. Analysis of the Optimal Thrust 

Direction 

An estimation of the optimal thrust direction [11] 

of the push can be obtained by maximising the 

deviation r  at the MOID, given the time-to-

impact  MOID it t t   . The deviation vector can be 

computed as: 

      MOID MOID tt t t   r A G v T v  

where T  is the transition matrix that links the 

impulsive  v  at time t  to the consequent deviation 

at MOIDt . 
MOIDA  is the matrix in (2) and 

tG  is the 

matrix associated to the Gauss’ equations written for 

finite differences, i.e. the control acceleration being 

replaced by an instantaneous change in the asteroid 

velocity vector: 

  t t α G v  

Following Conway’s [22] approach, r  can be 

maximised by choosing an impulse vector opt v  

parallel to the eigenvector of Τ  conjugate to the 

maximum eigenvalue. As a result of this analysis, we 

can derive that for a ∆t larger than a specific NEOt  

smaller than the nominal period of the asteroid NEOT , 

the optimal impulse presents a dominant component 

along the tangent direction, being this one associated 

to the shifting in time between the position of the 

asteroid and the Earth, rather than to a geometrical 

variation of the MOID. This conclusion is in 

agreement with previous works [22]-[24]. In the case 

of a low-thrust manoeuvre, as a first approximation, 

this results can be generalized by choosing the 

control vector at time t instantaneously tangent to the 

optimal impulsive  t v . Hence in this work, we 

focus on low-thrust acceleration in the tangent 

direction. This is a valid assumption when we 

consider hazardous cases with a warning time longer 

than approximately 0.75 NEOT . 

3. SEMI-ANALYTICAL FOMULAE 

FOR LOW-THRUST DEVIATION 

ACTIONS 

A set of semi-analytical formulae [11] were 

derived to calculate the total variation of the orbital 

parameters due to a low-thrust action. It is considered 

that a continuous acceleration 
ta  is applied along the 

orbit track, with modulus given by: 

 
2t

k
a

r
  (5) 

Where r is the distance from the Sun and k is a 

time-invariant proportionality constant that has to be 

fixed according to the specification of the power 

system. The selection of this acceleration law does 

not represent a severe restriction to the mission 

design, in fact Eq. (5) describes any strategy that 

exploits the Sun as a power source, e.g. a solar 

electric propulsion spacecraft that rendezvous with 

the NEO, anchors to its surfaces and pushes, or a 

solar mirror which collects the energy from the Sun 

and focuses it onto the asteroid surface to ablate it. 

Moreover, if the formulae presented in the following 

are adopted to design a low-thrust trajectory, Eq. (5) 

represents the control acceleration due to a power-

limited spacecraft. 

Gauss’ equations are written as a function of the 

true latitude: 

 
* *

d d dt

dtd d 


α α
 (6) 

where 
*

2

d h

dt r


 . Eqs. (6) are averaged over one 

period of the true anomaly   [14], giving the 

averaged rate of change of the orbital parameters: 
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The total variation of the orbital elements over 

one orbital period of *  can be approximated as: 
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if a zero variation in the anomaly of the pericentre is 

assumed, i.e. *d d  . This assumption holds true 

in the case the deviation is calculated over an integer 

number of orbital revolutions, because the periodic 

variation of   is zero and the secular one is of order 
1110 . The analytical formulae derived after some 

algebraic manipulations are: 
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where v  is the orbital velocity and   is defined as: 
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Eqs. (7) contain two elliptic integrals to be 

evaluated only once every orbital period: F is the 

incomplete elliptic integral of the first kind and E the 

incomplete elliptic integral of the second kind 

[14],[25]. Note that the integral kernels (7), to be 

evaluated in 
0 2   and 

0 , are function only of the 

semi-major axis and the eccentricity. 

The variation of the mean anomaly M strongly 

influences the consequent deviation, calculated 

through Eqs. (1). Hence, in order to have a better 

approximation of M  in Eqs. (7), the value of the 

eccentricity is updated in the evaluation of the 

integral kernels. This allows taking into account the 

secular variation e  over one orbital revolution. 

Finally, the total variation of the orbital 

parameters over the thrust arc is determined by 

integrating Eqs. (7) with the Euler method with a step 

of one orbital period. 

The analytical formulation in Eqs. (7) describes 

the mean variation of the Keplerian elements, hence it 

gives a sufficiently accurate estimate of their 

variation over one full revolution of the true latitude. 

For smaller angular intervals, the periodic component 

of the perturbation must be included because its 

variation is not zero. To this aim, an expression was 

derived to estimate the periodic component of semi-

major axis, eccentricity and argument of the perigee. 

The trend of a , e ,   function of *  can be 

approximated by the following equations: 
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The first two terms in Eqs. (8) are the initial 

condition for the secular variation of the orbital 

parameters at point 0 (i.e. the point when the 

deviation action commences), the third term indicates 

the secular variation obtained form Eqs. (7) and the 

forth one is the periodic variation. The coefficients 

aC , eC  and C  are the amplitudes of the periodic 

variation. Their value is set through a calibration 

process that needs to be performed once and for all, 

given the asteroid and the proportionality constant of 

the acceleration k. In fact it was verified that for low-

thrust action the amplitude of the periodic component 
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of the perturbation is almost constant over a sufficient 

number of integration periods (i.e. needed to deviate 

the asteroid of a considerable safe distance). 

For example, Fig. 2 compares the semi-analytical 

expression of the eccentricity (continuous bold line) 

to the numerical one (continuous normal line) for 

asteroid Apophis. The dot line represents the mean 

variation. 

 

Fig. 2 Analytic expression of the eccentricity. 

Asteroid Apophis. 

 

In order to properly take into account the periodic 

variation of the mean anomaly within an interval 

smaller than one revolution, the corresponding 

Gauss’ equation has to be integrated over * : 
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in which  *e  ,  *a   and  *   are expressed 

through Eqs. (8). 

3.1. Accuracy Analysis 

The accuracy of Eqs. (7) was assessed by 

computing the relative error on the achieved 

deviation r  between the numerical propagation of 

Gauss’ equations and the analytical formulae: 

 
propagated analytical

r

propagated

e
 






r r

r
. 

Fig. 3 represents the relative error for the 

deviation of asteroid 1979XB, pushing over an 

increasing number of orbital revolutions and starting 

the deviation manoeuvre at different angular 

positions. In fact the variation of the orbital 

parameters over one orbital revolution depends on 

where, along the orbit, the manoeuvre starts. In the 

legend 
pt  is the time at the pericentre, 

0t  the time 

when the deviation action commences and 
NEOT  is the 

asteroid nominal orbital period. An adaptive step-size 

Runge-Kutta Fehlberg integrator was used, setting 

the absolute and the relative tolerance respectively to 
161 10  and 142.3 10  in order to obtain a relative 

error of 510 . 
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Fig. 3 Relative error on the deviation. Asteroid 

1979XB. 

 

Fig. 4 to Fig. 6 present the relative error between 

semi-analytical expression and numerical values of e, 

a,   for asteroid 1979XB and the relative error on M 

with respect to the full integration of Eqs. (6) is 

depicted in Fig. 7. The analysis of the accuracy of the 

formulae was performed on different orbits, to verify 

the sensitivity to the orbital elements. 

 

 

Fig. 4 Relative error between the numerical and 

semi-analytical expression of the eccentricity. 

Asteroid 1979XB. 
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Fig. 5 Relative error between the numerical and 

semi-analytical expression of the semi-major axis. 

Asteroid 1979XB. 

 

Fig. 6 Relative error between the numerical and 

semi-analytical expression of the anomaly of the 

pericentre. Asteroid 1979XB. 

 

Fig. 7 Relative error between the numerical and 

semi-analytical expression of the mean anomaly. 

Asteroid 1979XB. 

4. TIME FORMULATION 

The approach described in paragraph 3, which 

will be referred to in the following as latitude 

formulation, does not make use of the time as a 

variable to describe the perturbed motion. 

However the time is required when dealing with 

the asteroid deviation problem since the component 

of the deviation associated to the shift in time has to 

be taken into account. In fact the latitude formulation 

accounts only for the shift in position of the asteroid. 

Given the thrust arc  i et t  we want to apply the 

semi-analytical formulation described in order to find 

the displacement of the asteroid after a certain time. 

Eqs. (7) are used to compute the variation of the 

orbital elements over the number of full revolutions 

contained in the time interval  i et t . Whereas, for 

the remainder of the thrusting arc, the element 

differences are calculated using Eqs. (8) and (9). The 

interval *  corresponding to the time interval 

 i et t  is computed by numerically integrating Eq. 

*

2

d h

dt r


 . Note that the terms corresponding to the 

secular variation of the parameters in Eqs. (8) are 

calculated updating a , e  and   at each orbital 

revolution. 

4.1. Accuracy Analysis 

The accuracy of the time formulation algorithm 

was verified. The deviation ,analytical tfr  achieved 

pushing over an increasing interval was calculated 

trough the algorithm summarised in section 4 and the 

result was compared with the deviation ,propagated tfr  

computed with the numerical integration of Eqs. (3), 

Gauss’ equations function of time. 

 
, ,

,

,

propagated tf analytical tf

r time formulation

propagated tf

e
 






r r

r
 

The relative error was computed for increasing 

values of the proportionality constant k. Fig. 8 reports 

,r time formulatione  calculated with the nominal value of k 

(set in section 6), 10k and 100k, for asteroid 1979XB. 

The values of ,r time formulatione  are plotted against the 

push time e it t , which was set equal to the time-to-

impact t  (i.e. e MOIDt t ). 
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Fig. 8 Relative error of the time formulation. 

Asteroid 1979XB (k=2·10
4
 km

3
/s

2
). 

 

The high value of the relative error when 

1 NEOt T   is due to the approximation introduced 

with the periodic component of the orbital elements 

in Eqs. (8). For 1 NEOt T   the element difference 

between the perturbed and the nominal orbit α  is of 

the same order of magnitude of the approximation 

error of the periodic component; moreover the secular 

variation is still small. As a consequence the relative 

error on the elements difference 

   , ,

,

propagated tf analytical tf

r

propagated tf

e
 







α α
α

α
 

is high. In particular this affects the difference of 

mean anomaly which significantly contributes to the 

terms in Eqs. (1). For this reason, the time 

formulation can be substituted to the numerical 

integration for a thrust arc t  longer than one orbital 

revolution. On the other hand, we need to consider 

that when low-thrust strategies are selected, the thrust 

arc is in general longer than 1 
NEOT . 

Finally Fig. 9 depicts the percentage of saving in 

computational time of the semi-analytical approach, 

with time formulation, with respect to the numerical 

integration. When 1 NEOt T   the gain is around the 

40% and it increases with the length of the push arc. 

 

 

Fig. 9 Percentage of saving in computational time 

by using the semi-analytical time formulation with 

respect to the numerical integration of Gauss’ 

equations. Asteroid 1979XB. 

5. DIFFERENTIAL DYNAMIC 

PROGRAMMING 

For the global search a hybrid optimisation 

approach was used [2],[26], which blends a stochastic 

search with an automatic solution space 

decomposition technique. Each point of the Pareto set 

is a complete mission, composed by two phases; the 

first leg is a low-trust transfer, from the Earth to the 

rendezvous with the asteroid and after that the 

deflection phase is performed. The achievable 

displacement of the asteroid at the point of MOID 

pushing over a time interval t  is computed trough 

the time formulation of the semi-analytical approach 

(section 4). The transfer trajectory, instead, was 

calculated through a shape-based method [18],[27]. 

The low-thrust transfer is computed in the two body 

problem, assuming zero velocity at the Earth sphere 

of influence. Moreover a 25% of margin was added 

to the spacecraft mass at launch. 

As a second stage, in order to improve our 

analysis, we performed a local optimisation of the 

low-thrust trajectories. 

The design of low-thrust trajectories requires the 

solution of an optimal control problem, the difficulty 

of which increases with the complexity of the 

dynamics. The low level of thrust implies long 

transfer times and moreover variable times and 

distances scales are introduced (for example when we 

consider the Earth escape and the heliocentric leg). 

Among the variety of optimisation methods 

currently adopted, we decided to investigate the 

method of Differential Dynamic Programming 

(DDP). This technique, firstly introduced by 

Jacobson and Mayne in 1970 [19], can be classified 

among the direct optimisation methods, but unlike the 



 9 

other approaches, the time dependence is not 

removed from the parameterisation. It satisfies 

Bellman’s principle of optimality so its solution 

should be as accurate as the solution of indirect 

methods, and unlike those it does not require a first 

guess for the Lagrange multipliers. 

The DDP is a successive approximation 

technique; in each iteration, given the current 

nominal trajectory and control, some auxiliary 

equations are integrated backward in time, giving the 

coefficients of the linear/quadratic approximation of 

the cost function, in the neighbourhood of the 

nominal trajectory and an improved control policy is 

computed. The trajectory is then forward integrated 

with the new control law and the reduction of the cost 

function is verified. Hence the control becomes the 

nominal policy for the next iteration. By several 

iterations a control strategy is determined, which 

progressively approximates the optimal control law. 

The standard DDP works with two variable 

classes: the state vector  s t , composed by position, 

velocity and mass of the spacecraft at time t and the 

dynamic control vector  u t  that in our specific case 

is the low-thrust provided by the engine. 

For each iteration the optimisation is discretised 

in N stages that represent the decision times of the 

trajectory. These stages can be identified as the 

integration steps for the discrete time dynamic of the 

problem: 

 
 1

1 1

, ; 1,....,  



j j j js f s u t j N

s s
 

where the state transition function f comprehends the 

dynamics equations and the integration scheme. In 

our case a Runge-Kutta Fehlberg scheme of the 4
th

 

order was used. 

The cost function of a trajectory with initial 

condition 
1s  and control schedule  ju  is 

       1 1 1

1

; , ;  



  
N

T

j j j N N

j

J u s g s u b s t  

where the first term represents the integral term 

function of  ,j jx u  and the second term introduces 

the terminal constraints of the form  1 1; 0N Ns t    , 

multiplied by a time invariant set of Lagrange 

multipliers b. 

For our problem we set the integral cost function to 

be a quadratic function of the thrust vector T, with a 

weight matrix R and the integration step 

1 j j jh t t , while the terminal constraints 

represents the condition of rendezvous with the 

asteroid: 

  
2

1 target

1

1
ˆ

2




  
N

T T

j j j N

j

J T RT h b s s  (10) 

The DDP bases on Bellman principle of 

optimality. At the stage j we define the optimal return 

function 

      1 1min , ;     
j

j j j j j j j
u

V s g s u t V s  (11) 

as the cost due to initial condition 
js  if the optimal 

policy is employed. The DDP applies the principle of 

optimality (dynamic programming) in the 

neighbourhood of a nominal trajectory, so at each 

stage j the cost function and the optimal return 

function from the next stage onward are replaced by 

their quadratic approximation (QP) about the current 

nominal control and trajectory (the superscript dash 

indicates the nominal conditions): 

 

 

    1 1 1min , ;
j

j j j

j j j j j j j j
u

V s s

QP g s s u u t V s s



    

 

     

(12) 

with the initial condition 

    1 1 1 1;    T

N N N NV s b s t  

The minimisation in Eq. (12) is performed from 

the final stage N+1 until stage 1. The main 

requirement for the assumption of the quadratic 

approximation to hold true is that the variations in the 

state from the nominal state due to the new control 

sequence should be sufficiently small. This may be 

achieved even if the variation in the control action is 

large, provided that the time duration of this variation 

is small. In this work we implemented an 

optimisation algorithm that employs global variations 

in the control [19]. The main core of the DDP 

algorithm is composed by two phases: a backward 

and a forward propagation. 

The first recursion is performed backward in time, 

stagewise form state N+1 to state 1. 

For each stage a global variation in ju  to 
*

ju  is 

allowed and computed by minimising Eq. (12), where 

the nominal trajectory is substituted. 
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    
*

*

1 1min , ,  
       

j

j j j j j
u

QP g s u t QP V s  (13) 

In our case the minimisation of Eq. (13) was 

performed through a sequential quadratic 

programming method. Then the linear/quadratic 

expansion of the cost and return function is 

computed, about the point  *,j js u . The coefficients 

of the Taylor expansion are explicitly written in term 

of the first and second derivatives of the state 

transition function, the stagewise loss function and 

the optimal return function form the stage onward. 

This allows the construction of the coefficient 
j  

determining the feedback strategy, which is stored in 

memory for the forward recursion. The algorithm has 

quadratic convergence under the assumption that the 

Hessian matrix of the cost function is positive 

definite. In the other cases a shift procedure on the 

eigenvalues of the matrix is employed to make them 

positive [20]. 

The forward recursion starts with the initial 

condition 
1s . The change in control j j ju s     

from 
*

ju  is function of the state variation and the 

coefficients computed in the backward recursion. The 

successor policy 
ju  is constructed and the new 

trajectory is propagated through the state transition 

function f: 

 
 *

1

1,...,
( , ; )





    




j j k j j

j j j j

u u s s
j N

s f s u t
 

A step size adjustment procedure ensures that the 

variation of the control does not break the assumption 

of the linear/quadratic approximation. So the 

corrected strategy will be: 

 
 

lim

*

lim

1,...,

,...,

 


    

j j

j j j j j

u u j j

u u s s j j N
 

The nominal control is applied from the initial 

step to a step 
limj  and after that the new strategy is 

adopted. This scheme allows for an improvement in 

the value cost function   jJ u  with respect to its 

nominal value of the previous DDP iteration: 

        lim  j jJ u J u c j  

where  lim j  is the expected hypothetical gain in 

the case the right term of Eq. (11) was quadratic. 

The successive iteration of backward and forward 

recursions continues until a convergence criterion is 

satisfied. Note that in this phase the value of 

Lagrange multipliers is kept constant. 

The equality constraints on the final state are 

handled through an external phase of DDP as 

suggested by Gershwin and Jacobson [28]. A 

variation of the Lagrange multiplier b  and a 

proportional variation of the control are computed, in 

order to decrease the constraints violations . In this 

way the control strategy is modified to: 

 
1,...,j j j j

b b b

u s b j N

 

     

  

     
 

where 
j  is a coefficient computed backward in time 

by expanding Eq. (12) also in the neighbourhood of 

b , and 0 1   ensures that  1 1;N Ns t    is 

reduced. 

The overall algorithm is sketched in Fig. 10 
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Fig. 10 DDP algorithm. 

 

The principal advantage of the DDP technique is 

that the problem is discretised in a number of 

decision steps, so the optimisation process requires 

the solution of a great number of small dimensional 

problems (one for each stage j). Moreover this feature 

allows for the coupling with an adaptive step 

integration scheme. 

6. NEO DEVIATION MISSIONS 

As a reference case, we consider a spacecraft 

equipped with a solar mirror with a diameter of 100 

m and a dry mass dm  of 895 kg [29]. The spacecraft 

is launched at a time dt , selected in a range of 20 

years before the possible collision, with zero velocity 

at the sphere of influence of the Earth, and is 

equipped with engine delivering an unlimited thrust 

with a fix specific impulse of 3250 sspI  . Once the 

spacecraft has intercepted the asteroid, the slow-push 

deviation manoeuvre is performed from 
it  up to the 

time at the MOID (i.e. 
e MOIDt t ); no propellant is 

assumed to be consumed during the deviation phase, 

but a 25% margin on the total wet mass is considered. 

Table 1 summarizes the key parameters of the 

mission. 

 

Table 1 Mission characteristics. 

spI  3250 s 

md  100 m 

dm  895 kg 

,maxv  0 km/s 

 
maxMOID dt t  20 y 

 

The value of k was set according to the model of 

the solar collector developed in Ref. [30]. The value 

of k was chosen in order to obtain the same order of 

acceleration provided by a solar inflatable mirror, 

with a diameter 
md  of 100÷110 m, along the range of 

distances from the Sun covered by the asteroid during 

its motion. Fig. 11 compares the acceleration 

computed through the full model described in Ref. 

[30], against Eq. (5), over a feasible range of 

distances for asteroid Apophis. Between the orbit 

apocentre and pericentre, Eq. (5) (represented with a 

solid line) gives an acceleration comparable with the 

one calculated through the full solar collector model 

(dash lines). Note that Eq. (5) does not take into 

account the decrease of the mass of the asteroid due 

to the ablation of the material, but this variation has 

been verified to be negligible in the domain of 

validity of the model. 
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Fig. 11 Magnitude of the acceleration for 

Apophis. 

Final state equality constraints: 

 Backward propagation: computation 

of the variation of Lagrange 

multipliers and variation of the 

control law 

 Forward propagation of new control 

and trajectory 

nominal control and trajectory:  ,j ju s  

Backward Recursion form 
1Nt 
 to 

1t : 

 determination of *

ju  

 computation of the linear/quadratic 

expansion of the cost and return 

function is computed, about the point 

 *,j js u ; 

 the coefficient j  is constructed and 

stored in memory 

Forward Recursion form 
1t  to 

1Nt 
: 

 computation of the new control and 

trajectory  ,j js u  

 step size adjustment procedure to 

obtain a new improved trajectory 

convergence 

criterion 

verify final 

constraints 
end 

yes 

yes 

no 

no 
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Table 2 reports the values of the acceleration 

constant k for asteroid Apophis, together with the 

average of the thrust acceleration on a nominal orbit 

of the asteroid, according to Eq. (5), the average of 

the Sun gravitational acceleration and the ratio 

between the two accelerations. 

 

Table 2 Acceleration constant k and average of 

the accelerations acting on asteroid Apophis. 

k [km
3
/s

2
] 2·10

5
 

Average thrust acceleration [km/s
2
] 1.09·10

-11
 

Average gravitational acceleration 

[km/s
2
] 

6.8·10
-8

 

Acceleration ratio 1.6·10
-4

 

 

A multi-objective optimisation was performed to 

minimise the vectorial objective function: 

   0min wm t       r r r  (14) 

with respect to the launch date, the time of flight and 

the hyperbolic excess velocity. In Eq. (14) 
0m  is the 

wet mass at the Earth defined as: 

  0 1.25d pm m m    (15) 

where pm  is the propellant mass for the transfer. 

w MOID dt t t   is the warning time and  r r  is 

the total deviation to be maximized. 

6.1. Apophis Deviation Mission 

In the following paragraph we report the results of 

a global search to identify candidate solutions for an 

interception and deviation mission to Apophis. A 

hypothetic impact is fixed on 15/05/2036 (13284 

MJD since 2000). The results of the optimisation are 

represented in the set of Pareto optimal solutions in 

Fig. 12. The three axes report the components of the 

objective function in Eq. (14), respectively the initial 

mass 
0m , the warning time and the magnitude of the 

deviation r . Note that, being the final mass at the 

asteroid interception fixed, the initial mass depends 

on of the propellant mass for the transfer leg. In the 

case of Apophis, a mission making use of a solar 

collector of 100 m achieves deviations of the order of 

10
6
 km, in a time range of 20 years, while solutions 

with 1000 days of warning time have a deviation of 

13000 km. 
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Fig. 12 Pareto front for the deviation mission of 

Apophis. 

 

Fig. 13 represents the launch date and time of 

flight for the optimal solutions. The colour scale 

indicates the value of the corresponding achieved 

deviation. 
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Fig. 13 Launch window for the deviation 

mission of Apophis. The colour scale reports the 

value of the achieved deviation in km. 

 

The modulus of the achieved deviation increases 

with the length of the thrust interval MOID it t t   , 

that is the time over which the deviation strategy is 

applied to the asteroid. The value of the deviation has 

a periodic trend with the angular position of the point 

of interception, as shown in Fig. 14. The colour scale 

represents the value of the true anomaly (in degrees) 

at interception. 
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Fig. 14 Achieved deviation as a function of the 

push time. Asteroid Apophis. The colour scale 

indicates the angle at the interception of the 

asteroid in degrees. 

 

In order to verify the propellant mass estimation 

computed by means of the global search, 80 solutions 

of the 500 points of the Pareto set in Fig. 12 were 

locally optimised with the DDP method, according to 

the cost function in Eq. (10). The time constraints of 

each mission were fixed to the launch dates found 

through the global search (see Fig. 13). Therefore the 

locally optimised solutions have the same launch date 

and time of flight as the Pareto points, but a different 

thrust profile (i.e. the optimal thrust profile for the 

minimisation of the integral of the thrust square) and 

a different propellant mass. Fig. 15 highlights the 

point of the Pareto set which have been refined with 

the DDP algorithm. The black points belong to the 

original set of solutions and the red ones are the 

corresponding solutions after the local optimisation. 

Also in this case, Eq. (15) was used to compute the 

initial mass. In most of the cases the initial mass, 

required to achieve the same asteroid deviation, 

decreases with the refinement of the solution. 
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Fig. 15 Points of the Pareto front locally 

optimised through the DDP method. 

 

Fig. 16 reports the percentage of propellant mass 

saved by the local optimisation of the trajectory, 

defined as: 

 
, prelimiminary design , DDP optimised

, DDP optimised

100
p p

p

m m

m


  

where , preliminary designpm  is the propellant mass 

estimated with the shape based method. In most of 

the cases the optimisation through the DDP method 

allows for a significant saving in propellant mass. 

However, some solutions present an increased 

propellant mass with respect to the preliminary 

design case; this is due to the different objective 

function used within the DDP algorithm. In fact the 

integral term of the cost function in Eq. (10) is 

equivalent to: 

  
2

1

d

d

t ToF

t

J T t dt



   

where  T t  is the magnitude of the thrust vector 

function of time. Instead the third term of the cost 

function in Eq. (14) indicates a minimisation of the 

propellant mass that, disregarding the constant 

coefficients, is: 

  
1

d

d

t ToF

t

J T t dt



   (16) 

If the local optimisation were performed with the 

objective function in Eq. (16), all the solutions would 

present a decrease of the propellant mass. 
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Fig. 16 Percentage of propellant mass saved 

through the local optimisation of the solutions. 
 

The preliminary design of the trajectory for the 

construction of the Pareto front did not include the 

transfer leg for escaping the Earth gravity field. In 

fact it was assumed the initial position of the 

spacecraft to be out of the sphere of influence of the 

Earth, with a zero relative velocity and a margin of 

25% was added on the total wet mass. 

In order to give an estimation of the propellant 

mass needed for the Earth escape, some trajectories 

were computed from an orbit around the Earth, by 

considering the Sun and the Earth as gravitational 

bodies. The optimisation was performed with the 

DDP algorithm; the trajectory was optimised as a 

whole, describing both the Earth centred and the Sun 

centred leg with respect to an inertial reference frame 

centred in the Earth. In this way it is possible to fully 

exploit the multi-body dynamics in the optimisation 

process. 

One of the trajectories optimised is presented in 

the following. An initial mass of 1350 kg was 

considered, with a specific impulse of 3250 s and no 

limits on the thrust magnitude. Fig. 17 shows the 

transfer trajectory in the Earth inertial reference 

frame. The red line represents the first guess and the 

blue line the optimal solution. The orbit of Apophis 

relative to the Earth is depicted with a green line. Fig. 

18 presents a close up of the Earth escape leg, 

starting from a geostationary orbit. The magnitude of 

the thrust vector is reported in Fig. 19 and Fig. 20 and 

the mass of the spacecraft is shown in Fig. 21.  

It has been computed that, for a mission with the 

these characteristics, the propellant mass needed to 

exit the sphere of influence of the Earth is about 100 

kg and the time of flight of the transfer is increased of 

100 days.  
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Fig. 17 Trajectory to Apophis rendezvous. 

Earth inertial reference frame. 
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Fig. 18 Earth escape. Earth inertial 

reference frame. 
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Fig. 19 Thrust vector. 
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Fig. 20 Thrust vector during the Earth escape. 
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Fig. 21 Spacecraft mass. 

7. CONCLUSION 

A solution to the asteroid deviation problem is 

proposed, which makes use of the proximal motion 

equations. Some semi-analytical formulae are used to 

calculate the total variation of the orbital elements 

when a low-push strategy is selected for the 

deflection phase. A global search was performed in 

the attempt of optimising the interception phase and 

the deviation phase as a whole. The preliminary 

design of the transfer trajectory was obtained through 

a shape based method and the solutions were refined 

by means of the differential dynamic programming 

method. In most of the cases a saving in propellant 

mass is saved through the local optimisation; this 

demonstrates that the design approach adopted within 

the global search is conservative. If the escape from 

the Earth gravity field is taken into account, the 

additional propellant mass can be accounted for in the 

25% of mass margin. In this case an increase of the 

warning time has to be considered. As an application, 

a set of mitigation mission to Apophis was presented. 
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