41 research outputs found

    Optimal Fully Electric Vehicle load balancing with an ADMM algorithm in Smartgrids

    Full text link
    In this paper we present a system architecture and a suitable control methodology for the load balancing of Fully Electric Vehicles at Charging Station (CS). Within the proposed architecture, control methodologies allow to adapt Distributed Energy Resources (DER) generation profiles and active loads to ensure economic benefits to each actor. The key aspect is the organization in two levels of control: at local level a Load Area Controller (LAC) optimally calculates the FEVs charging sessions, while at higher level a Macro Load Area Aggregator (MLAA) provides DER with energy production profiles, and LACs with energy withdrawal profiles. Proposed control methodologies involve the solution of a Walrasian market equilibrium and the design of a distributed algorithm.Comment: This paper has been accepted for the 21st Mediterranean Conference on Control and Automation, therefore it is subjected to IEEE Copyrights. See IEEE copyright notice at http://www.ieee.org/documents/ieeecopyrightform.pd

    Economic Model Predictive Control for Large-Scale and Distributed Energy Systems

    Get PDF

    Distributed Model Predictive Control for Smart Energy Systems

    Full text link

    Electric Vehicle (EV)-Assisted Demand-Side Management in Smart Grid

    Get PDF
    While relieving the dependency on diminishing fossil fuels, Electric Vehicles (EVs) provide a promising opportunity to realise an eco-friendly and cost-effective means of transportation. However, the enormous electricity demand imposed by the wide-scale deployment of EVs can put power infrastructure under critical strain, potentially impacting the efficiency, resilience, and safety of the electric power supply. Interestingly, EVs are deferrable loads with flexible charging requirements, making them an ideal prospect for the optimisation of consumer demand for energy, referred to as demand-side management. Furthermore, with the recent introduction of Vehicle-to-Grid (V2G) technology, EVs are now able to act as residential battery systems, enabling EV customers to store energy and use them as backup power for homes or deliver back to the grid when required. Hence, this thesis studies Electric Vehicle (EV)-assisted demand-side management strategies to manage peak electricity demand, with the long-term objective of transforming to a fully EV-based transportation system without requiring major upgrades in existing grid infrastructure. Specifically, we look at ways to optimise residential EV charging and discharging for smart grid, while addressing numerous requirements from EV customer's perspective and power system's perspective. First, we develop an EV charge scheduling algorithm with the objective of tracking an arbitrary power profile. The design of the algorithm is inspired by water-filling theory in communication systems design, and the algorithm is applied to schedule EV charging following a day-ahead renewable power generation profile. Then we extend that algorithm by incorporating V2G operation to shape the load curve in residential communities via valley-filling and peak-shaving. In the proposed EV charge-discharge algorithm, EVs are distributedly coordinated by implementing a non-cooperative game. Our numerical simulation results demonstrate that the proposed algorithm is effective in flattening the load curve while satisfying all heterogeneous charge requirements across EVs. Next, we propose an algorithm for network-aware EV charging and discharging, with an emphasis on both EV customer economics and distribution network aspects. The core of the algorithm is a Quadratic Program (QP) that is formulated to minimise the operational costs accrued to EV customers while maintaining distribution feeder nodal voltage magnitudes within prescribed thresholds. By means of a receding horizon control approach, the algorithm implements the respective QP-based EV charge-discharge control sequences in near-real-time. Our simulation results demonstrate that the proposed algorithm offers significant reductions in operational costs associated with EV charging and discharging, while also mitigating under-voltage and over-voltage conditions arising from peak power flows and reverse power flows in the distribution network. Moreover, the proposed algorithm is shown to be robust to non-deterministic EV arrivals and departures. While the previous algorithm ensures a stable voltage profile across the entire distribution feeder, it is limited to balanced power distribution networks. Therefore, we next extend that algorithm to facilitate EV charging and discharging in unbalanced distribution networks. The proposed algorithm also supports distributed EV charging and discharging coordination, where EVs determine their charge-discharge profiles in parallel, using an Alternating Direction Method of Multipliers (ADMM)-based approach driven by peer-to-peer EV communication. Our simulation results confirm that the proposed distributed algorithm is computationally efficient when compared to its centralised counterpart. Moreover, the proposed algorithm is shown to be successful in terms of correcting any voltage violations stemming from non-EV load, as well as, satisfying all EV charge requirements without causing any voltage violations

    Realizing the potential of distributed energy resources and peer-to-peer trading through consensus-based coordination and cooperative game theory

    Get PDF
    Driven by environmental and energy security concerns, a large number of small-scale distributed energy resources (DERs) are increasingly being connected to the distribution network. This helps to support a cost-effective transition to a lower-carbon energy system, however, brings coordination challenges caused by variability and uncertainty of renewable energy resources (RES). In this setting, local flexible demand (FD) and energy storage (ES) technologies have attracted great interests due to their potential flexibility in mitigating the generation and demand variability and improving the cost efficiency of low-carbon electricity systems. The combined effect of deregulation and digitalization inspired new ways of exchanging electricity and providing management/services on the paradigm of peer-to-peer (P2P) and transparent transactions. P2P energy trading enables direct energy trading between prosumers, which incentivizes active participation of prosumer in the trading of electricity in the distribution network, in the meantime, the efficient usage of FD and ES owned by the prosumers also facilitates better local power and energy balance. Though the promising P2P energy trading brings numerous advancements, the existing P2P mechanisms either fail to coordinate energy in a fully distributed way or are unable to adequately incentivize prosumers to participate, preventing prosumers from accessing the highest achievable monetary benefits and/or suffering severely from the curse of dimensionality. Therefore, this thesis aims at proposing three P2P energy trading enabling mechanisms in the aspect of fully distributed efficient balanced energy coordination through consensus-based algorithm and two incentivizing pricing and benefit distribution mechanisms through cooperative game theory. Distributed, consensus-based algorithms have emerged as a promising approach for the coordination of DER due to their communication, computation, privacy and reliability advantages over centralized approaches. However, state-of-the-art consensus-based algorithms address the DER coordination problem in independent time periods and therefore are inherently unable to capture the time-coupling operating characteristics of FD and ES resources. This thesis demonstrates that state-of-the-art algorithms fail to converge when these time-coupling characteristics are considered. In order to address this fundamental limitation, a novel consensus-based algorithm is proposed which includes additional consensus variables. These variables express relative maximum power limits imposed on the FD and ES resources which effectively mitigate the concentration of the FD and ES responses at the same time periods and steer the consensual outcome to a feasible and optimal solution. The convergence and optimality of the proposed algorithm are theoretically proven while case studies numerically demonstrate its convergence, optimality, robustness to initialization and information loss, and plug-and-play adaptability. Moreover, this thesis proposes two computationally efficient pricing and benefit distribution mechanisms to construct a stable grand coalition of prosumers participating in P2P trading, founded on cooperative game-theoretic principles. The first one involves a benefit distribution scheme inspired by the core tatonnement process while the second involves a novel pricing mechanism based on the solution of single linear programming. The performance of the proposed mechanisms is validated against state-of-the-art mechanisms through numerous case studies using real-world data. The results demonstrate that the proposed mechanisms exhibit superior computational performance than the nucleolus and are superior to the rest of the examined mechanisms in incentivizing prosumers to remain in the grand coalition.Open Acces

    An insight into the integration of distributed energy resources and energy storage systems with smart distribution networks using demand-side management

    Get PDF
    Demand-side management (DSM) is a significant component of the smart grid. DSM without sufficient generation capabilities cannot be realized; taking that concern into account, the integration of distributed energy resources (solar, wind, waste-to-energy, EV, or storage systems) has brought effective transformation and challenges to the smart grid. In this review article, it is noted that to overcome these issues, it is crucial to analyze demand-side management from the generation point of view in considering various operational constraints and objectives and identifying multiple factors that affect better planning, scheduling, and management. In this paper, gaps in the research and possible prospects are discussed briefly to provide a proper insight into the current implementation of DSM using distributed energy resources and storage. With the expectation of an increase in the adoption of various types of distributed generation, it is estimated that DSM operations can offer a valuable opportunity for customers and utility aggregators to become active participants in the scheduling, dispatch, and market-oriented trading of energy. This review of DSM will help develop better energy management strategies and reduce system uncertainties, variations, and constraints

    Demand Side Management in the Smart Grid

    Get PDF
    corecore