2 research outputs found

    Optimal Control of Inhomogeneous Ensembles

    Get PDF
    This dissertation is concerned with formulating the problem and developing methods for the synthesis of optimal, open-loop inputs for large numbers of identically structured dynamical systems that exhibit variation in the values of characteristic parameters across the collection, or ensemble. Our goal is to steer the family of systems from an initial state: or pattern) to a desired state: or pattern) with the same common control while compensating for the inherent dispersion caused by the inhomogeneous parameter values. We compose an optimal ensemble control problem and develop a computational method based on pseudospectral approximations to solve these complex problems. This class of ensemble systems is strongly motivated by natural complications in the control of quantum phenomena, especially in magnetic resonance; however, similar structures are prevalent in a variety of other applications. From another perspective, the same methodology can be used to analyze systems that have uncertainty in the values of characteristic parameters, which are ubiquitous throughout science and engineering

    Optimal Control and Synchronization of Dynamic Ensemble Systems

    Get PDF
    Ensemble control involves the manipulation of an uncountably infinite collection of structurally identical or similar dynamical systems, which are indexed by a parameter set, by applying a common control without using feedback. This subject is motivated by compelling problems in quantum control, sensorless robotic manipulation, and neural engineering, which involve ensembles of linear, bilinear, or nonlinear oscillating systems, for which analytical control laws are infeasible or absent. The focus of this dissertation is on novel analytical paradigms and constructive control design methods for practical ensemble control problems. The first result is a computational method %based on the singular value decomposition (SVD) for the synthesis of minimum-norm ensemble controls for time-varying linear systems. This method is extended to iterative techniques to accommodate bounds on the control amplitude, and to synthesize ensemble controls for bilinear systems. Example ensemble systems include harmonic oscillators, quantum transport, and quantum spin transfers on the Bloch system. To move towards the control of complex ensembles of nonlinear oscillators, which occur in neuroscience, circadian biology, electrochemistry, and many other fields, ideas from synchronization engineering are incorporated. The focus is placed on the phenomenon of entrainment, which refers to the dynamic synchronization of an oscillating system to a periodic input. Phase coordinate transformation, formal averaging, and the calculus of variations are used to derive minimum energy and minimum mean time controls that entrain ensembles of non-interacting oscillators to a harmonic or subharmonic target frequency. In addition, a novel technique for taking advantage of nonlinearity and heterogeneity to establish desired dynamical structures in collections of inhomogeneous rhythmic systems is derived
    corecore