2 research outputs found

    Optimal Dynamic Force Mapping for Obstacle-Aided Locomotion in 2D Snake Robots

    No full text
    This is the author’s final, accepted and refereed manuscript to the article.Snake robots are biomimetic robots highly suited for traversing challenging terrain where traditional robots have difficulty moving. A key aspect is obstacle-aided locomotion, where the snake pushes against the environment to achieve the desired propulsion. The main focus of this work is to optimally determine how to use the motor torque inputs that result in obstacle forces suitable to achieve some user-defined desired path for the snake. To this end, we present a new dynamical snake model, an explicit algebraic relationship between input and obstacle forces, and formulate an optimization problem that seeks to minimize energy consumption while achieving propulsion along the desired path.Akseptert fagfellevurdert versjon/postprint. “© © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

    Snake and Snake Robot Locomotion in Complex, 3-D Terrain

    Get PDF
    Snakes are able to traverse almost all types of environments by bending their elongate bodies in three dimensions to interact with the terrain. Similarly, a snake robot is a promising platform to perform critical tasks in various environments. Understanding how 3-D body bending effectively interacts with the terrain for propulsion and stability can not only inform how snakes move through natural environments, but also inspire snake robots to achieve similar performance to facilitate humans. How snakes and snake robots move on flat surfaces has been understood relatively well in previous studies. However, such ideal terrain is rare in natural environments and little was understood about how to generate propulsion and maintain stability when large height variations occur, except for some qualitative descriptions of arboreal snake locomotion and a few robots using geometric planning. To bridge this knowledge gap, in this dissertation research we integrated animal experiments and robotic studies in three representative environments: a large smooth step, an uneven arena of blocks of large height variation, and large bumps. We discovered that vertical body bending induces stability challenges but can generate large propulsion. When traversing a large smooth step, a snake robot is challenged by roll instability that increases with larger vertical body bending because of a higher center of mass. The instability can be reduced by body compliance that statistically increases surface contact. Despite the stability challenge, vertical body bending can potentially allow snakes to push against terrain for propulsion similar to lateral body bending, as demonstrated by corn snakes traversing an uneven arena. This ability to generate large propulsion was confirmed on a robot if body-terrain contact is well maintained. Contact feedback control can help the strategy accommodate perturbations such as novel terrain geometry or excessive external forces by helping the body regain lost contact. Our findings provide insights into how snakes and snake robots can use vertical body bending for efficient and versatile traversal of the three-dimensional world while maintaining stability
    corecore