10 research outputs found

    Automated design synthesis of CMOS operational amplifers

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (p. 159-161).by Ognen J. Nastov.M.S

    Diseño de circuitos analógicos y de señal mixta con consideraciones de diseño físico y variabilidad

    Get PDF
    Advances in microelectronic technology has been based on an increasing capacity to integrate transistors, moving this industry to the nanoelectronics realm in recent years. Moore’s Law [1] has predicted (and somehow governed) the growth of the capacity to integrate transistors in a single IC. Nevertheless, while this capacity has grown steadily, the increasing number of design tasks that are involved in the creation of the integrated circuit and their complexity has led to a phenomenon known as the ``design gap®®. This is the difference between what can theoretically be integrated and what can practically be designed. Since the early 2000s, the International Technology Roadmap of Semiconductors (ITRS) reports, published by the Semiconductor Industry Association (SIA), alert about the necessity to limit the growth of the design cost by increasing the productivity of the designer to continue the semiconductor industry’s growth. Design automation arises as a key element to close this ”design gap”. In this sense, electronic design automation (EDA) tools have reached a level of maturity for digital circuits that is far behind the EDA tools that are made for analog circuit design automation. While digital circuits rely, in general, on two stable operation states (which brings inherent robustness against numerous imperfections and interferences, leading to few design constraints like area, speed or power consumption), analog signal processing, on the other hand, demands compliance with lots of constraints (e.g., matching, noise, robustness, ...). The triumph of digital CMOS circuits, thanks to their mentioned robustness, has, ultimately, facilitated the way that circuits can be processed by algorithms, abstraction levels and description languages, as well as how the design information traverse the hierarchical levels of a digital system. The field of analog design automation faces many more difficulties due to the many sources of perturbation, such as the well-know process variability, and the difficulty in treating these systematically, like digital tools can do. In this Thesis, different design flows are proposed, focusing on new design methodologies for analog circuits, thus, trying to close the ”gap” between digital and analog EDA tools. In this chapter, the most important sources for perturbations and their impact on the analog design process are discussed in Section 1.2. The traditional analog design flow is discussed in 1.3. Emerging design methodologies that try to reduce the ”design gap” are presented in Section 1.4 where the key concept of Pareto-Optimal Front (POF) is explained. This concept, brought from the field of economics, models the analog circuit performances into a set of solutions that show the optimal trade-offs among conflicting circuit performances (e.g. DC-gain and unity-gain frequency). Finally, the goals of this thesis are presented in Section 1.5

    Degree-per-hour mode-matched micromachined silicon vibratory gyroscopes

    Get PDF
    The objective of this research dissertation is to design and implement two novel micromachined silicon vibratory gyroscopes, which attempt to incorporate all the necessary attributes of sub-deg/hr noise performance requirements in a single framework: large resonant mass, high drive-mode oscillation amplitudes, large device capacitance (coupled with optimized electronics), and high-Q resonant mode-matched operation. Mode-matching leverages the high-Q (mechanical gain) of the operating modes of the gyroscope and offers significant improvements in mechanical and electronic noise floor, sensitivity, and bias stability. The first micromachined silicon vibratory gyroscope presented in this work is the resonating star gyroscope (RSG): a novel Class-II shell-type structure which utilizes degenerate flexural modes. After an iterative cycle of design optimization, an RSG prototype was implemented using a multiple-shell approach on (111) SOI substrate. Experimental data indicates sub-5 deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 30,000 at 23ÂșC (in vacuum). The second micromachined silicon vibratory gyroscope presented in this work is the mode-matched tuning fork gyroscope (M2-TFG): a novel Class-I tuning fork structure which utilizes in-plane non-degenerate resonant flexural modes. Operated under vacuum, the M2-TFG represents the first reported high-Q perfectly mode-matched operation in Class-I vibratory microgyroscope. Experimental results of device implemented on (100) SOI substrate demonstrates sub-deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 50,000 at 23ÂșC. In an effort to increase capacitive aspect ratio, a new fabrication technology was developed that involved the selective deposition of doped-polysilicon inside the capacitive sensing gaps (SPD Process). By preserving the structural composition integrity of the flexural springs, it is possible to accurately predict the operating-mode frequencies while maintaining high-Q operation. Preliminary characterization of vacuum-packaged prototypes was performed. Initial results demonstrated high-Q mode-matched operation, excellent thermal stability, and sub-deg/hr Allan variance bias instability.Ph.D.Committee Chair: Dr. Farrokh Ayazi; Committee Member: Dr. Mark G. Allen; Committee Member: Dr. Oliver Brand; Committee Member: Dr. Paul A. Kohl; Committee Member: Dr. Thomas E. Michael

    Digital ADCs and ultra-wideband RF circuits for energy constrained wireless applications by Denis Clarke Daly.

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 173-183).Ongoing advances in semiconductor technology have enabled a multitude of portable, low power devices like cellular phones and wireless sensors. Most recently, as transistor device geometries reach the nanometer scale, transistor characteristics have changed so dramatically that many traditional circuits and architectures are no longer optimal and/or feasible. As a solution, much research has focused on developing 'highly digital' circuits and architectures that are tolerant of the increased leakage, variation and degraded voltage headrooms associated with advanced CMOS processes. This thesis presents several highly digital, mixed-signal circuits and architectures designed for energy constrained wireless applications. First, as a case study, a highly digital, voltage scalable flash ADC is presented. The flash ADC, implemented in 0.18 [mu]m CMOS, leverages redundancy and calibration to achieve robust operation at supply voltages from 0.2 V to 0.9 V. Next, the thesis expands in scope to describe a pulsed, noncoherent ultra-wideband transceiver chipset, implemented in 90 nm CMOS and operating in the 3-to-5 GHz band. The all-digital transmitter employs capacitive combining and pulse shaping in the power amplifier to meet the FCC spectral mask without any off-chip filters. The noncoherent receiver system-on-chip achieves both energy efficiency and high performance by employing simple amplifier and ADC structures combined with extensive digital calibration. Finally, the transceiver chipset is integrated in a complete system for wireless insect flight control.(cont.) Through the use of a flexible PCB and 3D die stacking, the total weight of the electronics is kept to 1 g, within the carrying capacity of an adult Manduca sexta moth. Preliminary wireless flight control of a moth in a wind tunnel is demonstrated.Ph.D

    Low-power Wearable Healthcare Sensors

    Get PDF
    Advances in technology have produced a range of on-body sensors and smartwatches that can be used to monitor a wearer’s health with the objective to keep the user healthy. However, the real potential of such devices not only lies in monitoring but also in interactive communication with expert-system-based cloud services to offer personalized and real-time healthcare advice that will enable the user to manage their health and, over time, to reduce expensive hospital admissions. To meet this goal, the research challenges for the next generation of wearable healthcare devices include the need to offer a wide range of sensing, computing, communication, and human–computer interaction methods, all within a tiny device with limited resources and electrical power. This Special Issue presents a collection of six papers on a wide range of research developments that highlight the specific challenges in creating the next generation of low-power wearable healthcare sensors

    Direct measurement of coating thermal noise in the AEI 10m prototype

    Get PDF
    A thermal noise interferometer for the characterization of thermal noise in high reflectivity mirrors has been commissioned and first direct measurements of coating thermal noise have been performed. This serves as an important step in the improvement of current and future gravitational wave detectors

    Research and design of an embedded controller and GUI for the automation of the armature Volt-Drop test.

    Get PDF
    M. Sc. Eng. University of KwaZulu-Natal, Durban 2009.In a rapidly evolving technological and industrialised society, automation is a current and growing trend. The concept is typically applied to uneconomical processes and extends from the automation of highly complex processes to those that are less complex. This dissertation discusses the automation of a previously mundane, manual, time-consuming and inefficient task using an embedded controller with dual enhanced microcontrollers as its core. Spoornet recognised the need to automate this and other processes hence a drive was initiated by Spoornet’s Engineering and Technology department into the study of automation principles and techniques that can be used as a basis for the automation of workshops and test centers. This research stems from the above mentioned drive. The Volt-Drop Test was the process that was used as a model to investigate the considerations, boundaries, design concepts and the hardware and software development that is inherent in the automation of a process. The design of the controller that facilitates the automation of the Volt-Drop Test was completed after research into embedded systems, embedded microcontrollers, programming languages and techniques, digital electronics, analogue electronics, digital system design concepts and techniques, analogue system design concepts and techniques, and the latest available electronic components. A Graphic User Interface (GUI) was developed to interface with the controller to set up test parameters, display the present test status, perform calculations on the data received from the controller and display faults in the armature under test. Further, the GUI has the functionality to save all test data in a predefined and secure location to be retrieved and viewed as historical data or used for trending. A Remote Graphic User Interface (RGUI) was also developed. This interface is used solely to view test data (retrieved from the saved history files), from any geographic location provided that the user has been granted access to the secure location in which this data is saved. In the testing phase, all tests were carried out using high quality, high accuracy and recently calibrated instrumentation. The test results obtained largely reflected what was expected from the system when compared to simulations that were carried out on the controller and the GUI during their development. With regard to the automation process, the system follows the procedure as it was designed with respect to correct switching sequences, response to system errors, timing of events and correct and efficient communication between the controller and the GUI. In terms of the data acquisition aspects the system captures, converts, calculates, analyses and logs data, within the expected input range with a level of accuracy that is considered to be high (a maximum percentage error of 0.75% - expressed as a percentage of the injected test supply) for this type of application when compared to the accuracy of present test methods

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore