52 research outputs found

    An Interactive Tool for Automatic Predimensioning and Numerical Modeling of Arch Dams

    Get PDF
    The construction of double-curvature arch dams is an attractive solution from an economic viewpoint due to the reduced volume of concrete necessary for their construction as compared to conventional gravity dams. Due to their complex geometry, many criteria have arisen for their design. However, the most widespread methods are based on recommendations of traditional technical documents without taking into account the possibilities of computer-aided design. In this paper, an innovative software tool to design FEM models of double-curvature arch dams is presented. Several capabilities are allowed: simplified geometry creation (interesting for academic purposes), preliminary geometrical design, high-detailed model construction, and stochastic calculation performance (introducing uncertainty associated with material properties and other parameters). This paper specially focuses on geometrical issues describing the functionalities of the tool and the fundamentals of the design procedure with regard to the following aspects: topography, reference cylinder, excavation depth, crown cantilever thickness and curvature, horizontal arch curvature, excavation and concrete mass volume, and additional elements such as joints or spillways. Examples of application on two Spanish dams are presented and the results obtained analyzed

    Shape optimisation of concrete open spandrel arch bridges

    Get PDF
    U ovom se radu analizira lučni most s otvorenim nadlučnim sklopom. Računalni kod je izveden za izradu modela na temelju geometrijskih podataka, a radi rješavanja problema optimalizacije. U ovom se radu provodi postupak optimalnog projektiranja, a ukupan obujam materijala ugrađenog u donji ustroj mosta usvaja se kao objektivna funkcija. Donji ustroj sadrži stup i armiranobetonski luk. Na kraju je proveden i postupak optimalizacije pomoću algoritma za istovremeno stohastičko predviđanje poremećaja.An open spandrel arch bridge is analysed in this paper. A computer code is written to create a model from geometrical data, so as to solve the optimisation problem. An optimum design procedure is conducted in the paper, and the total material volume of the bridge substructure is adopted as an objective function. The substructure includes the column and the reinforced-concrete arch. Finally, the optimization technique is implemented using the Simultaneous Perturbation Stochastic Approximation algorithm

    Seepage criteria based optimal design of water retaining structures with reliability quantification utilizing surrogate model linked simulation-optimization approach

    Get PDF
    The safety of hydraulic water retaining structures (HWRS) is an important issue as many instances of HWRS failure have been reported. Failure of HWRS may lead to catastrophic events, especially those associated with seepage failures. Therefore, seepage safety factors recommended for HWRS design are generally very conservative. These safety factors have been developed based on approximation calculations, unreliable assumptions, and ideal experimental conditions, which are rarely replicated in real field situations. However, with the development of the numerical methods, and high speed processors, more accurate seepage analysis has become possible, even for complex flow domains, different scenarios of boundary conditions, and varied hydraulic conductivity. On the other hand, because construction of HWRS requires a significant amount of construction material and engineering effort, the construction cost efficiency of HWRS is an issue that must be considered in design of HWRS. This study aims to determine the minimum cost design of HWRS constructed on permeable soils, incorporating numerical solutions of a seepage system related to HWRS, utilizing linked a simulation–optimization (S-O) model. Due to the complexity and inefficacy of directly linking a simulation model to the optimization model, the numerical simulation model was replaced by trained surrogate models. These surrogate models can be trained based on numerically simulated data sets. Therefore, trained surrogate models expeditiously and accurately provide predicted responses relating to seepage characteristics pertaining to HWRS. The optimization model based on the linked S-O technique incorporated different safety factors and hydraulic structure design requirements as constraints. The majority of these constraints and objective function(s) were affected by the responses of predicted seepage characteristics based on the developed surrogate models. To improve the safety of HWRS design, the effect of non-homogenous and anisotropic hydraulic conductivity were incorporated in the S-O model. Obtained solution results demonstrated that considering stratification of the flow domain due to different hydraulic conductivity values or anisotropic ratios can significantly change the optimum design of HWRS. Low hydraulic conductivity and anisotropic ratios resulted in more critical seepage characteristics. Consequently, the minimum construction cost increased due to an increase of dimensions of involved seepage protection design variables. Furthermore, uncertainty in estimating hydraulic conductivity is incorporated in the S-O model. The reliability based optimal design (RBOD) framework based on the multi-realization optimization technique was implemented using the S-O model. The uncertainty in seepage quantities due to uncertainty of hydraulic conductivity was represented using many stochastic ensemble surrogate models. Each ensemble model included many surrogate models trained in utilizing input– output data sets simulated with different scenarios of hydraulic conductivity drawn from diverse random fields based on different log-normal distributions. Obtained results of this approach demonstrated substantial consequences of considering uncertainty in hydraulic conductivity. Also, the deterministic safety factors, especially for those pertaining to the exit gradient, were insufficient to provide prescribed safety in the long term. Although surrogate models are utilized in S-O approaches, each run of the S-O model takes a long time as developed S-O models are applied to complex and large scale problems. Hence, efficiency of the S-O model was a key factor to successfully implement the methodology. Three main techniques were utilized to increase the efficiency of the S-O technique: using parallel computing, utilizing nested function technique, and using a vectorised formulation system. These strategies substantially boosted efficiency of implementing the S-O model. The S-O models were implemented for many hypothetical scenarios for different purposes. In general, results demonstrated that optimum design of the seepage protection system relating to HWRS design must include two end cut-offs with an apron between them. The dimensions of these components were augmented with an increase of upstream water head, and reduction of anisotropic ratios or hydraulic conductivity value. The main role of the downstream cut-off was to decrease the actual exit gradient value. This impact is more pronounced if the inclination angle of the cut-off is toward the downstream side (>90 degrees). The role of the upstream cut-off was to decrease uplift pressure values on the HWRS base. Consequently, this partially contributed to decreasing the exit gradient value. The effect of the upstream cut-off in reducing the uplift pressure was more when the inclination angle was toward the upstream side (<90 degrees). Moreover, the apron (floor) width helped to increase the stability of HWRS. This variable provided the required weight to improve HWRS resistance to external hydraulic forces and to uplift pressure. Incorporating the weight of water (hydrostatic pressure) at the upstream side in counterbalancing momentum and hydraulic forces showed improvement in the safety of the HWRS. Also, all conditions and safety factors pertaining to HWRS design were satisfied. The exit gradient safety factor was the most important critical factor affecting optimum design as obtained optimum solutions satisfied the minimum permissible values of the exit gradient safety factor, i.e., at the minimum permissible value. Also, the eccentric load condition played a crucial role in resulting optimum solutions. Finally, applying the S-O model to obtain reliable and safe design of HWRS at minimum cost was successfully implemented for performance evaluation purposes. This technique may be extended to incorporate more complex scenarios in HWRS design where the impact of dynamic and seismic load could be incorporated. The effect of unsteady state seepage system could be another interesting direction for future studies. Further, incorporating more sources of the uncertainty associated with design parameters could achieve a more accurate estimation of actual safety for the HWRS design

    Parametric design and optimization of arched trusses under vertical and horizontal multi-load cases

    Get PDF
    This dissertation faces the problem of the optimum design of steel truss arches subject to multiple load cases. Arches are one of the most ancient shape-resistant structures, widely used in both civil engineering and architecture. For instance, arches can be considered as purely compressed structures, provided that their “line of thrust” coincides with the centre line of the arch. The “line of thrust” is the locus of the points of application of the thrusts (internal forces or stress resultants) that must be contained within the cross-section of the arch in such a way that the arch transfers loads to the foundations through axial compressive stresses only. As a matter of fact, the more the “line of thrust” differs from the centre line of the arch, the larger the unfavourable bending moments that arise in the arch. This is the reason why it is fundamental to pay close attention to the choice of the shape for an arch in order to minimize (or avoid when it is possible) unfavourable bending effects. Several analytical, graphical and physical methods are provided to find the optimal shape of a monolithic (single rib) arch subjected to a certain load case (i.e. the “funicular curve” for that load). However, if multiple load cases must be considered, it is not possible to find a proper optimal shape for an arch with single rib. In this case, the choice of truss arches with at least two chords becomes indispensable. Indeed, it has been demonstrated that structural optimization of in-plane truss arches with two chords subjected to a single load case leads to optimal solutions in which upper and lower chords tend to coincide with each other and with the “funicular curve” (i.e. the “line of thrust”) for that load. In light of the above, simultaneous shape and size optimization of steel truss arches with two arched chords linked each other through a bracing system (with variable Pratt-type pattern) has been performed for multiple load cases and different structural boundary conditions. Truss arches are effectively used in arch bridges, especially when the arch span exceeds 200 meters (five out of the six steel arch bridges with a span over 500 m are truss arch bridges). For this purpose, a hybrid optimization routine integrating a parametric definition of the design problem, a metaheuristic optimization algorithm and a code for Finite Element Analysis (FEA) has been developed through a MATLAB program. The proposed optimization method allows to simultaneously optimize a larger set of design variables, notwithstanding their large number and various nature (topology, shape and size, as well as continuous and discrete variables, have been concurrently considered). Third-degree Rational Bézier Curves have been chosen to optimize the shape of the arch chords because they can represent a wide family of curves (including conic curves), depending on a small number of parameters. In so doing, in-plane truss arches with different span lengths and structural boundary conditions have been optimized for multiple load cases, only considering vertical loads (acting on the same plane as the arch), since in-plane arches are not suited to withstand out-of-plane loads. On the other hand, spatial arched trusses with two arched chords lying on different planes have been optimally designed for multiple loadings acting in different directions. In particular, a steel arched truss with a lower arched chord variably inclined in the 3D-space and a horizontal upper arched chord linked each other through a bracing system has been designed and optimized for three vertical load cases and a horizontal seismic action parallel to the upper chord plane. Thus, analysing the obtained results, useful suggestions for steel truss arch design have been deduced and presented in this dissertation

    Novel Approaches for Structural Health Monitoring

    Get PDF
    The thirty-plus years of progress in the field of structural health monitoring (SHM) have left a paramount impact on our everyday lives. Be it for the monitoring of fixed- and rotary-wing aircrafts, for the preservation of the cultural and architectural heritage, or for the predictive maintenance of long-span bridges or wind farms, SHM has shaped the framework of many engineering fields. Given the current state of quantitative and principled methodologies, it is nowadays possible to rapidly and consistently evaluate the structural safety of industrial machines, modern concrete buildings, historical masonry complexes, etc., to test their capability and to serve their intended purpose. However, old unsolved problematics as well as new challenges exist. Furthermore, unprecedented conditions, such as stricter safety requirements and ageing civil infrastructure, pose new challenges for confrontation. Therefore, this Special Issue gathers the main contributions of academics and practitioners in civil, aerospace, and mechanical engineering to provide a common ground for structural health monitoring in dealing with old and new aspects of this ever-growing research field

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Proceedings of FORM 2022. Construction The Formation of Living Environment

    Get PDF
    This study examines the integration of building information modelling (BIM) technologies in operation &amp; maintenance stage in the system of managing real estate that helps to reduce transaction costs. The approach and method are based on Digital Twin technology and Model Based System Engineering (MBSE) approach. The results of the development of a service for digital facility management and digital expertise are presented. The connection between physical and digital objects is conceptualized

    Perspectives on European Earthquake Engineering and Seismology: Volume 1

    Get PDF
    Civil Engineering; Natural Hazards; Geotechnical Engineering & Applied Earth Sciences Industry Sec; 2ECEES; Earthquake Engineering; Performance Based Design and Earthquake Engineering; Irregular Buildings and Earthquakes; Historical Structures and Earthquakes; Precast Buildings and Earthquakes; Bridge Design and Earthquake

    Active thermography for the investigation of corrosion in steel surfaces

    Get PDF
    The present work aims at developing an experimental methodology for the analysis of corrosion phenomena of steel surfaces by means of Active Thermography (AT), in reflexion configuration (RC). The peculiarity of this AT approach consists in exciting by means of a laser source the sound surface of the specimens and acquiring the thermal signal on the same surface, instead of the corroded one: the thermal signal is then composed by the reflection of the thermal wave reflected by the corroded surface. This procedure aims at investigating internal corroded surfaces like in vessels, piping, carters etc. Thermal tests were performed in Step Heating and Lock-In conditions, by varying excitation parameters (power, time, number of pulse, ….) to improve the experimental set up. Surface thermal profiles were acquired by an IR thermocamera and means of salt spray testing; at set time intervals the specimens were investigated by means of AT. Each duration corresponded to a surface damage entity and to a variation in the thermal response. Thermal responses of corroded specimens were related to the corresponding corrosion level, referring to a reference specimen without corrosion. The entity of corrosion was also verified by a metallographic optical microscope to measure the thickness variation of the specimens

    Advances in Computational Intelligence Applications in the Mining Industry

    Get PDF
    This book captures advancements in the applications of computational intelligence (artificial intelligence, machine learning, etc.) to problems in the mineral and mining industries. The papers present the state of the art in four broad categories: mine operations, mine planning, mine safety, and advances in the sciences, primarily in image processing applications. Authors in the book include both researchers and industry practitioners
    • …
    corecore