273 research outputs found

    Automatic Control of Clutch Engagement and Slip for Hybrid Vehicle

    Get PDF
    This paper develops a design of an automatic controller of clutch engagement and slip regulation for hybrid electrical vehicle (HEV) using fuzzy logic. The motivation for the use of fuzzy logic control in this study is its ability to handle the system based on uncertain and imprecise input information. Fuzzy logic can reduce the difficulty of mathematical modeling for complex system and can provide a smooth and fast clutch engagement. Fuzzy logic controller can be also used to reduce the vehicle vibration via regulating the slip between two clutch disks. Simulations for the new controller are conducted with Matlab Simulink. Results show that the system can achieve clutch engagement with low jerk and high comfort with considerable vibration reduction

    Fuzzy Logic Control of Clutch for Hybrid Vehicle: Fuzzy Logic Control of Clutch for Hybrid Vehicle

    Get PDF
    This paper provides a design of an automatic clutch controller for hybrid electrical vehicle (HEV) using fuzzy logic. The use of fuzzy logic can reduce the difficulty of mathematical modeling of complex systems since fuzzy logic can deal with uncertain and imprecise data and problems which may have several solutions rather than one. Fuzzy logic algorithms for the automatic clutch controller are developed to achieve a smooth and fast engaging transition. Comprehensive simulations for the whole hybrid electrical vehicle are conducted in Matlab 2009a. An experimental test for a real damping clutch is also carried out. Results show that the active regulation of the clutch slipping ration can considerably reduce the vehicle vibration in resonance frequencies. The new system can handle the clutch engagement with low jerk and high comfort

    Integrated automotive control:robust design and automated tuning of automotive controllers

    Get PDF

    Traction and Launch Control for a Rear-Wheel-Drive Parallel-Series Plug-In Hybrid Electric Vehicle

    Get PDF
    Hybrid vehicles are becoming the future of automobiles leading into the all-electric generation of vehicles. Electric vehicles come with a great increase in torque at lower RPM resulting in the issue of transferring this torque to the ground effectively. In this thesis, a method is presented for limiting wheel slip and targeting the ideal slip ratio for dry asphalt and low friction surfaces at every given time step. A launch control system is developed to further reduce wheel slip on initial acceleration from standstill furthering acceleration rates to sixty miles per hour. A MATLAB Simulink model was built of the powertrain as well as a six degree of freedom vehicle model that has been validated with real testing data from the car. This model was utilized to provide a reliable platform for optimizing control strategies without having to have access to the physical vehicle, thus reducing physical testing. A nine percent increase has been achieved by utilizing traction control and launch control for initial vehicle movement to sixty miles per hour

    Comparative system dynamic modeling of a conventional and hybrid electric powertrain

    Full text link
    © 2017 Taylor & Francis Group, London. Hybrid Electric Vehicles (HEVs) provide many known benefits over conventional vehicles, including reduced emissions, increased fuel economy, and performance. The high cost of HEVs has somewhat limited their widespread adoption, especially in developing countries. Conversely, it is these countries that would benefit most from the environmental benefits of HEV technology. As part of our ongoing project to develop a cost-effective and viable mild HEV for these markets, dynamic simulations are required to ensure that the proposed designs are to achieve their desired targets. In this paper, mathematical models of the powertrain are used to analyze and compare the dynamics of both a conventional power train and one with the addition of components required for the Mild Hybrid system. Using Matlab and Simulink, simulations of both powertrains under particular driving conditions are performed to observe the advantages of the MHEV over conventional drivetrains. These benefits include torque-hole filling between gear changes, increased fuel efficiency and performance

    Simulation and Control of an Automotive Dry Clutch

    Get PDF
    Abstract-In this paper the dynamic behavior and control of an automotive dry clutch is analyzed. Thereto, a straightforward model of the clutch is embedded within a dynamic model of an automotive powertrain comprising an internal combustion engine, drivetrain and wheels moving a vehicle through tire-road adhesion. The engagement of the clutch is illustrated using the model best suited for simulation, based on work of Karnopp. These simulation results are used for conceiving a decoupling controller for the engine and clutch torque. Simulation results with the controller show significant improvement over the un-controlled case in terms of vehicle launch comfort. A modified controller is proposed that results in even more appreciated drive comfort while not deteriorating other system behavior

    Integrated Prognostics Observer for Condition Monitoring of an Automated Manual Transmission Dry Clutch System

    Get PDF
    The closed loop feedback control system of an Automated Manual Transmission (AMT) electro-pneumatic clutch actuator is used for intelligent real time condition monitoring, enhanced diagnostics and prognostic health management of the dry clutch system, by integrating with the existing gearbox prognostics observer. The real-time sensor data of the clutch actuator piston position is analyzed for monitoring the condition of the clutch system. Original parameters of the new clutch are stored in the Electrically Erasable Programmable Read-only Memory (EEPROM) of the AMT controller and the real-time data is used by the observer for assessing the degradation/wear of the frictional clutch parts. Also, clutch slip during torque transmission is monitored, using the engine speed and the gearbox input shaft speed from Controller Area Network (CAN). Condition monitoring of clutch system provides enhanced prognostic functionality for AMT system which ensures consistent clutch performance, gear shift quality and timely warning for recalibration, repair and/or replacement of the critical wear and tear parts. Also, systematic analysis of the monitored data provides an accurate diagnosis of a developing fault. Thus, with the advanced control systems in place for AMT, a closed loop feedback based condition monitoring system is modelled for improved diagnostics and prognostics of AMT clutch system

    Control of a mechanical hybrid powertrain

    Get PDF
    • …
    corecore