382 research outputs found

    Scheduling of Multicast and Unicast Services under Limited Feedback by using Rateless Codes

    Full text link
    Many opportunistic scheduling techniques are impractical because they require accurate channel state information (CSI) at the transmitter. In this paper, we investigate the scheduling of unicast and multicast services in a downlink network with a very limited amount of feedback information. Specifically, unicast users send imperfect (or no) CSI and infrequent acknowledgements (ACKs) to a base station, and multicast users only report infrequent ACKs to avoid feedback implosion. We consider the use of physical-layer rateless codes, which not only combats channel uncertainty, but also reduces the overhead of ACK feedback. A joint scheduling and power allocation scheme is developed to realize multiuser diversity gain for unicast service and multicast gain for multicast service. We prove that our scheme achieves a near-optimal throughput region. Our simulation results show that our scheme significantly improves the network throughput over schemes employing fixed-rate codes or using only unicast communications

    Delay QoS Provisioning and Optimal Resource Allocation for Wireless Networks

    Get PDF
    Recent years have witnessed a significant growth in wireless communication and networking due to the exponential growth in mobile applications and smart devices, fueling unprecedented increase in both mobile data traffic and energy demand. Among such data traffic, real-time data transmissions in wireless systems require certain quality of service (QoS) constraints e.g., in terms of delay, buffer overflow or packet drop/loss probabilities, so that acceptable performance levels can be guaranteed for the end-users, especially in delay sensitive scenarios, such as live video transmission, interactive video (e.g., teleconferencing), and mobile online gaming. With this motivation, statistical queuing constraints are considered in this thesis, imposed as limitations on the decay rate of buffer overflow probabilities. In particular, the throughput and energy efficiency of different types of wireless network models are analyzed under QoS constraints, and optimal resource allocation algorithms are proposed to maximize the throughput or minimize the delay. In the first part of the thesis, the throughput and energy efficiency analysis for hybrid automatic repeat request (HARQ) protocols are conducted under QoS constraints. Approximations are employed for small QoS exponent values in order to obtain closed-form expressions for the throughput and energy efficiency metrics. Also, the impact of random arrivals, deadline constraints, outage probability and QoS constraints are studied. For the same system setting, the throughput of HARQ system is also analyzed using a recurrence approach, which provides more accurate results for any value of the QoS exponent. Similarly, random arrival models and deadline constraints are considered, and these results are further extended to the finite-blocklength coding regime. Next, cooperative relay networks are considered under QoS constraints. Specifically, the throughput performance in the two-hop relay channel, two-way relay channel, and multi-source multi-destination relay networks is analyzed. Finite-blocklength codes are considered for the two-hop relay channel, and optimization over the error probabilities is investigated. For the multi-source multi-destination relay network model, the throughput for both cases of with and without CSI at the transmitter sides is studied. When there is perfect CSI at the transmitter, transmission rates can be varied according to instantaneous channel conditions. When CSI is not available at the transmitter side, transmissions are performed at fixed rates, and decoding failures lead to retransmission requests via an ARQ protocol. Following the analysis of cooperative networks, the performance of both half-duplex and full-duplex operations is studied for the two-way multiple input multiple output (MIMO) system under QoS constraints. In full-duplex mode, the self-interference inflicted on the reception of a user due to simultaneous transmissions from the same user is taken into account. In this setting, the system throughput is formulated by considering the sum of the effective capacities of the users in both half-duplex and full-duplex modes. The low signal to noise ratio (SNR) regime is considered and the optimal transmission/power-allocation strategies are characterized by identifying the optimal input covariance matrices. Next, mode selection and resource allocation for device-to-device (D2D) cellular networks are studied. As the starting point, ransmission mode selection and resource allocation are analyzed for a time-division multiplexed (TDM) cellular network with one cellular user, one base station, and a pair of D2D users under rate and QoS constraints. For a more complicated setting with multiple cellular and D2D users, two joint mode selection and resource allocation algorithms are proposed. In the first algorithm, the channel allocation problem is formulated as a maximum-weight matching problem, which can be solved by employing the Hungarian algorithm. In the second algorithm, the problem is divided into three subproblems, namely user partition, power allocation and channel assignment, and a novel three-step method is proposed by combining the algorithms designed for the three subproblems. In the final part of the thesis, resource allocation algorithms are investigated for content delivery over wireless networks. Three different systems are considered. Initially, a caching algorithm is designed, which minimizes the average delay of a single-cell network. The proposed algorithm is applicable in settings with very general popularity models, with no assumptions on how file popularity varies among different users, and this algorithm is further extended to a more general setting, in which the system parameters and the distributions of channel fading change over time. Next, for D2D cellular networks operating under deadline constraints, a scheduling algorithm is designed, which manages mode selection, channel allocation and power maximization with acceptable complexity. This proposed scheduling algorithm is designed based on the convex delay cost method for a D2D cellular network with deadline constraints in an OFDMA setting. Power optimization algorithms are proposed for all possible modes, based on our utility definition. Finally, a two-step intercell interference (ICI)-aware scheduling algorithm is proposed for cloud radio access networks (C-RANs), which performs user grouping and resource allocation with the goal of minimizing delay violation probability. A novel user grouping algorithm is developed for the user grouping step, which controls the interference among the users in the same group, and the channel assignment problem is formulated as a maximum-weight matching problem in the second step, which can be solved using standard algorithms in graph theory

    Multiuser Scheduling in a Markov-modeled Downlink using Randomly Delayed ARQ Feedback

    Full text link
    We focus on the downlink of a cellular system, which corresponds to the bulk of the data transfer in such wireless systems. We address the problem of opportunistic multiuser scheduling under imperfect channel state information, by exploiting the memory inherent in the channel. In our setting, the channel between the base station and each user is modeled by a two-state Markov chain and the scheduled user sends back an ARQ feedback signal that arrives at the scheduler with a random delay that is i.i.d across users and time. The scheduler indirectly estimates the channel via accumulated delayed-ARQ feedback and uses this information to make scheduling decisions. We formulate a throughput maximization problem as a partially observable Markov decision process (POMDP). For the case of two users in the system, we show that a greedy policy is sum throughput optimal for any distribution on the ARQ feedback delay. For the case of more than two users, we prove that the greedy policy is suboptimal and demonstrate, via numerical studies, that it has near optimal performance. We show that the greedy policy can be implemented by a simple algorithm that does not require the statistics of the underlying Markov channel or the ARQ feedback delay, thus making it robust against errors in system parameter estimation. Establishing an equivalence between the two-user system and a genie-aided system, we obtain a simple closed form expression for the sum capacity of the Markov-modeled downlink. We further derive inner and outer bounds on the capacity region of the Markov-modeled downlink and tighten these bounds for special cases of the system parameters.Comment: Contains 22 pages, 6 figures and 8 tables; revised version including additional analytical and numerical results; work submitted, Feb 2010, to IEEE Transactions on Information Theory, revised April 2011; authors can be reached at [email protected]/[email protected]/[email protected]

    Stability and Distributed Power Control in MANETs with Outages and Retransmissions

    Full text link
    In the current work the effects of hop-by-hop packet loss and retransmissions via ARQ protocols are investigated within a Mobile Ad-hoc NET-work (MANET). Errors occur due to outages and a success probability function is related to each link, which can be controlled by power and rate allocation. We first derive the expression for the network's capacity region, where the success function plays a critical role. Properties of the latter as well as the related maximum goodput function are presented and proved. A Network Utility Maximization problem (NUM) with stability constraints is further formulated which decomposes into (a) the input rate control problem and (b) the scheduling problem. Under certain assumptions problem (b) is relaxed to a weighted sum maximization problem with number of summants equal to the number of nodes. This further allows the formulation of a non-cooperative game where each node decides independently over its transmitting power through a chosen link. Use of supermodular game theory suggests a price based algorithm that converges to a power allocation satisfying the necessary optimality conditions of (b). Implementation issues are considered so that minimum information exchange between interfering nodes is required. Simulations illustrate that the suggested algorithm brings near optimal results.Comment: 25 pages, 6 figures, 1 table, submitted to the IEEE Trans. on Communication

    WIMAX LINK PERFORMANCE ANALYSIS FOR WIRELESS AUTOMATION APPLICATIONS

    Get PDF
    Wireless broadband access technologies are rapidly growing and a corresponding growth in the demand of its applicability transcends faster internet access, high speed file download and different multimedia applications such as voice calls, video streaming, teleconferencing etc, to industrial operations and automation. Industrial and automation systems perform operations that requires the transmission of real time information from one end to another through high-performance wireless broadband communication links. WiMAX, based on IEEE 802.16 standard is one of the wireless broadband access technologies that has overcome location, speed, and access limitations of the traditional Digital Subscriber Line and Wireless Fidelity, and offers high efficient data rates. This thesis presents detailed analysis of operational WiMAX link performance parameters such as throughput, latency, jitter, and packet loss for suitable applicability in wireless automation applications. The theoretical background of components and functionalities of WiMAX physical and MAC layers as well as the network performance features are presented. The equipment deployed for this field experiment are Alvarion BreeZeMAX 3000 fixed WiMAX equipment operating in the 3.5 GHz licensed band with channel bandwidth of 3.5 MHz. The deployed equipment consisting of MBSE and CPE are installed and commissioned prior to field tests. Several measurements are made in three link quality scenarios (sufficient, good and excellent) in the University of Vaasa campus. Observations and results obtained are discussed and analyzed.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    A random access MAC protocol for MPR satellite networks

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaRandom access approaches for Low Earth Orbit (LEO) satellite networks are usually incompatible with the Quality of Service (QoS) requirements of multimedia tra c, especially when hand-held devices must operate with very low power. Cross-Layered optimization architectures, combined with Multipacket Reception (MPR)schemes are a good choice to enhance the overall performance of a wireless system. Hybrid Network-assisted Diversity Multiple Access (H-NDMA) protocol, exhibits high energy e ciency, with MPR capability, but its use with satellites is limited by the high round trip time. This protocol was adapted to satellites, in Satellite-NDMA, but it required a pre-reservation mechanism that introduces a signi cant delay. This dissertation proposes a random access protocol that uses H-NDMA, for Low Earth Orbit (LEO) satellite networks, named Satellite Random-NDMA (SR-NDMA). The protocol addresses the problem inherent to satellite networks (large round trip time and signi cant energy consumption) de ning a hybrid approach with an initial random access plus possible additional scheduled retransmissions. An MPR receiver combines the multiple copies received, gradually reducing the error rate. Analytical performance models are proposed for the throughput, delay, jitter and energy e ciency considering nite queues at the terminals. It is also addressed the energy e ciency optimization, where the system parameters are calculated to guarantee the QoS requirements. The proposed system's performance is evaluated for a Single-Carrier with Frequency Domain Equalization (SC-FDE) receiver. Results show that the proposed system is energy e cient and can provide enough QoS to support services such as video telephony
    corecore