39,349 research outputs found

    Decision support for build-to-order supply chain management through multiobjective optimization

    Get PDF
    This is the post-print version of the final paper published in International Journal of Production Economics. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.This paper aims to identify the gaps in decision-making support based on multiobjective optimization (MOO) for build-to-order supply chain management (BTO-SCM). To this end, it reviews the literature available on modelling build-to-order supply chains (BTO-SC) with the focus on adopting MOO techniques as a decision support tool. The literature has been classified based on the nature of the decisions in different part of the supply chain, and the key decision areas across a typical BTO-SC are discussed in detail. Available software packages suitable for supporting decision making in BTO supply chains are also identified and their related solutions are outlined. The gap between the modelling and optimization techniques developed in the literature and the decision support needed in practice are highlighted. Future research directions to better exploit the decision support capabilities of MOO are proposed. These include: reformulation of the extant optimization models with a MOO perspective, development of decision supports for interfaces not involving manufacturers, development of scenarios around service-based objectives, development of efficient solution tools, considering the interests of each supply chain party as a separate objective to account for fair treatment of their requirements, and applying the existing methodologies on real-life data sets.Brunel Research Initiative and Enterprise Fund (BRIEF

    Dynamic Product Assembly and Inventory Control for Maximum Profit

    Full text link
    We consider a manufacturing plant that purchases raw materials for product assembly and then sells the final products to customers. There are M types of raw materials and K types of products, and each product uses a certain subset of raw materials for assembly. The plant operates in slotted time, and every slot it makes decisions about re-stocking materials and pricing the existing products in reaction to (possibly time-varying) material costs and consumer demands. We develop a dynamic purchasing and pricing policy that yields time average profit within epsilon of optimality, for any given epsilon>0, with a worst case storage buffer requirement that is O(1/epsilon). The policy can be implemented easily for large M, K, yields fast convergence times, and is robust to non-ergodic system dynamics.Comment: 32 page

    Inventory drivers in a pharmaceutical supply chain

    Get PDF
    In recent years, inventory reduction has been a key objective of pharmaceutical companies, especially within cost optimization initiatives. Pharmaceutical supply chains are characterized by volatile and unpredictable demands –especially in emergent markets-, high service levels, and complex, perishable finished-good portfolios, which makes keeping reasonable amounts of stock a true challenge. However, a one-way strategy towards zero-inventory is in reality inapplicable, due to the strategic nature and importance of the products being commercialised. Therefore, pharmaceutical supply chains are in need of new inventory strategies in order to remain competitive. Finished-goods inventory management in the pharmaceutical industry is closely related to the manufacturing systems and supply chain configurations that companies adopt. The factors considered in inventory management policies, however, do not always cover the full supply chain spectrum in which companies operate. This paper works under the pre-assumption that, in fact, there is a complex relationship between the inventory configurations that companies adopt and the factors behind them. The intention of this paper is to understand the factors driving high finished-goods inventory levels in pharmaceutical supply chains and assist supply chain managers in determining which of them can be influenced in order to reduce inventories to an optimal degree. Reasons for reducing inventory levels are found in high inventory holding and scrap related costs; in addition to lost sales for not being able to serve the customers with the adequate shelf life requirements. The thesis conducts a single case study research in a multi-national pharmaceutical company, which is used to examine typical inventory configurations and the factors affecting these configurations. This paper presents a framework that can assist supply chain managers in determining the most important inventory drivers in pharmaceutical supply chains. The findings in this study suggest that while external and downstream supply chain factors are recognized as being critical to pursue inventory optimization initiatives, pharmaceutical companies are oriented towards optimizing production processes and meeting regulatory requirements while still complying with high service levels, being internal factors the ones prevailing when making inventory management decisions. Furthermore, this paper investigates, through predictive modelling techniques, how various intrinsic and extrinsic factors influence the inventory configurations of the case study company. The study shows that inventory configurations are relatively unstable over time, especially in configurations that present high safety stock levels; and that production features and product characteristics are important explanatory factors behind high inventory levels. Regulatory requirements also play an important role in explaining the high strategic inventory levels that pharmaceutical companies hold

    A Framework for Understanding the Interdependencies between Mass Customization and Complexity

    Get PDF
    Mass customization is a business strategy that aims at satisfying individual customer needs, nearly with mass production efficiency. It induces a high complexity level because of various customer requirements and a steadily changing environment. However, mass customization has some potential to reduce complexity. The interdependencies between mass customization and complexity are discussed in order to demonstrate that mass customization is not just an oxymoron linking two opposite production concepts, but a business strategy that contributes towards reaching a competitive advantage. On the one hand, mass customization increases the production program, manufacturing and configuration complexities. On the other hand, it contributes to reduce complexity at the levels of order taking process, product and inventories. The main results attained through the analysis are integrated in a comprehensive framework that shows the complexity increasing and complexity decreasing aspects due to mass customization.Mass Customization; Complexity Management; Product Variety

    Revenue Management and Demand Fulfillment: Matching Applications, Models, and Software

    Get PDF
    Recent years have seen great successes of revenue management, notably in the airline, hotel, and car rental business. Currently, an increasing number of industries, including manufacturers and retailers, are exploring ways to adopt similar concepts. Software companies are taking an active role in promoting the broadening range of applications. Also technological advances, including smart shelves and radio frequency identification (RFID), are removing many of the barriers to extended revenue management. The rapid developments in Supply Chain Planning and Revenue Management software solutions, scientific models, and industry applications have created a complex picture, which appears not yet to be well understood. It is not evident which scientific models fit which industry applications and which aspects are still missing. The relation between available software solutions and applications as well as scientific models appears equally unclear. The goal of this paper is to help overcome this confusion. To this end, we structure and review three dimensions, namely applications, models, and software. Subsequently, we relate these dimensions to each other and highlight commonalities and discrepancies. This comparison also provides a basis for identifying future research needs.Manufacturing;Revenue Management;Software;Advanced Planning Systems;Demand Fulfillment

    Competition, Co-operation and Subcontracting - Lessons from the Clothing Industry in Thailand.

    Get PDF
    A close examination of the organisation of the clothing industry in Thailand exhibits a rather paradoxical situation: although the structural features of the sector - the breaking down of the production process, high labour intensity, low asset specificity, low skilled labour - seem to legitimate a market co-ordination mechanism, it is a close, durable and multiform co-operation which cements, in Thailand, the relations between contractors and subcontractors, as well as between subcontractors themselves. We defend the idea that this kind of co-operative organisation of economic activities represents an appropriate answer to the flexibility required by ever changing markets. Co-operation is here understood as a mechanism of temporal co-ordination of economic activities which, far from substituting itself to the market co-ordination mechanism, rather completes it.Thailand, subcontracting, industrial district, competition, co-operation

    Further Model-Based Estimates of U.S. Total Manufacturing Production Capital and Technology, 1949-2005

    Get PDF
    Production capital and technology (i.e., total factor productivity) in U.S. manufacturing are fundamental for understanding output and productivity growth of the U.S. economy but are unobserved at this level of aggregation and must be estimated before being used in empirical analysis. Previously, we developed a method for estimating production capital and technology based on an estimated dynamic structural economic model and applied the method using annual SIC data for 1947-1997 to estimate production capital and technology in U.S. total manufacturing. In this paper, we update this work by reestimating the model and production capital and technology using annual SIC data for 1949-2001 and partly overlapping NAICS data for 1987-2005.Kalman filter estimation of latent variables

    Trade, FDI, and the Organization of Firms

    Get PDF
    New developments in the world economy have triggered research designed to better understand the changes in trade and investment patterns, and the reorganization of production across national borders. Although traditional trade theory has much to offer in explaining parts of this puzzle, other parts required new approaches. Particularly acute has been the need to model alternative forms of involvement of business firms in foreign activities, because organizational change has been central in the transformation of the world economy. This paper reviews the literature that has emerged from these efforts. The theoretical refinements have focused on the individual firm, studying its choices in response to its own characteristics, the nature of the industry in which it operates, and the opportunities afforded by foreign trade and investment. Important among these choices are organizational features, such as sourcing strategies. But the theory has gone beyond the individual firm, studying the implications of firm behavior for the structure of industries. It provides new explanations for trade structure and patterns of FDI, both within and across industries, and has identified new sources of comparative advantage.
    • 

    corecore