1,510 research outputs found

    Online Algorithms for Geographical Load Balancing

    Get PDF
    It has recently been proposed that Internet energy costs, both monetary and environmental, can be reduced by exploiting temporal variations and shifting processing to data centers located in regions where energy currently has low cost. Lightly loaded data centers can then turn off surplus servers. This paper studies online algorithms for determining the number of servers to leave on in each data center, and then uses these algorithms to study the environmental potential of geographical load balancing (GLB). A commonly suggested algorithm for this setting is “receding horizon control” (RHC), which computes the provisioning for the current time by optimizing over a window of predicted future loads. We show that RHC performs well in a homogeneous setting, in which all servers can serve all jobs equally well; however, we also prove that differences in propagation delays, servers, and electricity prices can cause RHC perform badly, So, we introduce variants of RHC that are guaranteed to perform as well in the face of such heterogeneity. These algorithms are then used to study the feasibility of powering a continent-wide set of data centers mostly by renewable sources, and to understand what portfolio of renewable energy is most effective

    Routing and Staffing when Servers are Strategic

    Get PDF
    Traditionally, research focusing on the design of routing and staffing policies for service systems has modeled servers as having fixed (possibly heterogeneous) service rates. However, service systems are generally staffed by people. Furthermore, people respond to workload incentives; that is, how hard a person works can depend both on how much work there is, and how the work is divided between the people responsible for it. In a service system, the routing and staffing policies control such workload incentives; and so the rate servers work will be impacted by the system's routing and staffing policies. This observation has consequences when modeling service system performance, and our objective is to investigate those consequences. We do this in the context of the M/M/N queue, which is the canonical model for large service systems. First, we present a model for "strategic" servers that choose their service rate in order to maximize a trade-off between an "effort cost", which captures the idea that servers exert more effort when working at a faster rate, and a "value of idleness", which assumes that servers value having idle time. Next, we characterize the symmetric Nash equilibrium service rate under any routing policy that routes based on the server idle time. We find that the system must operate in a quality-driven regime, in which servers have idle time, in order for an equilibrium to exist, which implies that the staffing must have a first-order term that strictly exceeds that of the common square-root staffing policy. Then, within the class of policies that admit an equilibrium, we (asymptotically) solve the problem of minimizing the total cost, when there are linear staffing costs and linear waiting costs. Finally, we end by exploring the question of whether routing policies that are based on the service rate, instead of the server idle time, can improve system performance.Comment: First submitted for journal publication in 2014; accepted for publication in Operations Research in 2016. Presented in select conferences throughout 201

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Performance Analysis for Heterogeneous Cloud Servers Using Queueing Theory

    Full text link
    © 2020 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] In this article, we consider the problem of selecting appropriate heterogeneous servers in cloud centers for stochastically arriving requests in order to obtain an optimal tradeoff between the expected response time and power consumption. Heterogeneous servers with uncertain setup times are far more common than homogenous ones. The heterogeneity of servers and stochastic requests pose great challenges in relation to the tradeoff between the two conflicting objectives. Using the Markov decision process, the expected response time of requests is analyzed in terms of a given number of available candidate servers. For a given system availability, a binary search method is presented to determine the number of servers selected from the candidates. An iterative improvement method is proposed to determine the best servers to select for the considered objectives. After evaluating the performance of the system parameters on the performance of algorithms using the analysis of variance, the proposed algorithm and three of its variants are compared over a large number of random and real instances. The results indicate that proposed algorithm is much more effective than the other four algorithms within acceptable CPU times.This work is supported by the National Key Research and Development Program of China Grant No. 2017YFB1400801, the National Natural Science Foundation of China Grant Nos. 61572127, 61872077, 61832004 and Collaborative Innovation Center of Wireless Communications Technology. Rub~en Ruiz is partly supported by the Spanish Ministry of Science, Innovation, and Universities, under the project "OPTEP-Port Terminal Operations Optimization" (No. RTI2018-094940-BI00) financed with FEDER funds.Wang, S.; Li, X.; Ruiz García, R. (2020). Performance Analysis for Heterogeneous Cloud Servers Using Queueing Theory. IEEE Transactions on Computers. 69(4):563-576. https://doi.org/10.1109/TC.2019.2956505S56357669
    • …
    corecore