5,577 research outputs found

    Control and Communication Protocols that Enable Smart Building Microgrids

    Full text link
    Recent communication, computation, and technology advances coupled with climate change concerns have transformed the near future prospects of electricity transmission, and, more notably, distribution systems and microgrids. Distributed resources (wind and solar generation, combined heat and power) and flexible loads (storage, computing, EV, HVAC) make it imperative to increase investment and improve operational efficiency. Commercial and residential buildings, being the largest energy consumption group among flexible loads in microgrids, have the largest potential and flexibility to provide demand side management. Recent advances in networked systems and the anticipated breakthroughs of the Internet of Things will enable significant advances in demand response capabilities of intelligent load network of power-consuming devices such as HVAC components, water heaters, and buildings. In this paper, a new operating framework, called packetized direct load control (PDLC), is proposed based on the notion of quantization of energy demand. This control protocol is built on top of two communication protocols that carry either complete or binary information regarding the operation status of the appliances. We discuss the optimal demand side operation for both protocols and analytically derive the performance differences between the protocols. We propose an optimal reservation strategy for traditional and renewable energy for the PDLC in both day-ahead and real time markets. In the end we discuss the fundamental trade-off between achieving controllability and endowing flexibility

    Capacity Estimation for Vehicle-to-Grid Frequency Regulation Services with Smart Charging Mechanism

    Get PDF
    Due to various green initiatives, renewable energy will be massively incorporated into the future smart grid. However, the intermittency of the renewables may result in power imbalance, thus adversely affecting the stability of a power system. Frequency regulation may be used to maintain the power balance at all times. As electric vehicles (EVs) become popular, they may be connected to the grid to form a vehicle-to-grid (V2G) system. An aggregation of EVs can be coordinated to provide frequency regulation services. However, V2G is a dynamic system where the participating EVs come and go independently. Thus it is not easy to estimate the regulation capacities for V2G. In a preliminary study, we modeled an aggregation of EVs with a queueing network, whose structure allows us to estimate the capacities for regulation-up and regulation-down, separately. The estimated capacities from the V2G system can be used for establishing a regulation contract between an aggregator and the grid operator, and facilitating a new business model for V2G. In this paper, we extend our previous development by designing a smart charging mechanism which can adapt to given characteristics of the EVs and make the performance of the actual system follow the analytical model.Comment: 11 pages, Accepted for publication in IEEE Transactions on Smart Gri

    Capacity management of vehicle-to-grid system for power regulation services

    Get PDF
    Due to green initiatives adopted in many countries, renewable energy will be massively incorporated into the future smart grid. However, the intermittency of the renewables may result in power imbalance, thus adversely affecting the stability of a power system. Voltage regulation may be used to maintain the power balance at all times. As electric vehicles (EVs) become popular, they may be connected to the grid to form a vehicle-to-grid (V2G) system. An aggregation of EVs can be coordinated to provide voltage regulation services. However, V2G is a dynamic system where EVs are connected to the grid according to the owners' habits. In this paper, we model an aggregation of EVs with a queueing network, whose structure allows us to estimate the capacities for regulation up and regulation down, separately. The estimated capacities from the V2G system can be used for establishing a regulation contract between an aggregator and the grid operator, and facilitate a new business model for V2G. © 2012 IEEE.published_or_final_versio

    An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †

    Get PDF
    The design and implementation of management policies for plug-in electric vehicles (PEVs) need to be supported by a holistic understanding of the functional processes, their complex interactions, and their response to various changes. Models developed to represent different functional processes and systems are seen as useful tools to support the related studies for different stakeholders in a tangible way. This paper presents an overview of modeling approaches applied to support aggregation-based management and integration of PEVs from the perspective of fleet operators and grid operators, respectively. We start by explaining a structured modeling approach, i.e., a flexible combination of process models and system models, applied to different management and integration studies. A state-of-the-art overview of modeling approaches applied to represent several key processes, such as charging management, and key systems, such as the PEV fleet, is then presented, along with a detailed description of different approaches. Finally, we discuss several considerations that need to be well understood during the modeling process in order to assist modelers and model users in the appropriate decisions of using existing, or developing their own, solutions for further applications

    A conceptual V2G aggregation platform

    Get PDF
    In this work is proposed the design of a system to create and handle an Electric Vehicle (EV) community, based on social networks collaborative approach and a credit mechanism to incentive participation and divide profits. This system is part of a V2G (Vehicle-to-Grid) module that allows EV owners to be aggregated in communities and participate in the electricity market. With this system it is possible for the EV owners to win money while the EVs are parked and plugged, delivering back to the electrical grid part of the energy stored in the batteries, increasing the attractiveness of EVs.Fundação para a Ciência e a Tecnologia (FCT) - Project MIT-Pt/EDAM-SMS/0030/2008.MIT-Portugal Progra

    Optimal Online Charging Coordination of Plug in Electric Vehicles in Unbalanced Grids for Ancillary Voltage Support

    Get PDF
    This PhD thesis will propose an optimal online charge control through genetic algorithm for G2V coordination of PEVs (OL-C-TP) in unbalanced systems. Moreover the algorithm will be extended to also include V2G coordination and offer ancillary voltage support (OL-CD-TPQ) by considering two different methods based on the utility time-of-day prices for exporting reactive power and droop controller for decentralized exporting of reactive power. Then the performance of OL-CD-TPQ by switching PEVs in three phase unbalanced networks is improved
    • …
    corecore