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Abstract—Due to green initiatives adopted in many countries,
renewable energy will be massively incorporated into the future
smart grid. However, the intermittency of the renewables may
result in power imbalance, thus adversely affecting the stability
of a power system. Voltage regulation may be used to maintain
the power balance at all times. As electric vehicles (EVs) become
popular, they may be connected to the grid to form a vehicle-to-
grid (V2G) system. An aggregation of EVs can be coordinated to
provide voltage regulation services. However, V2G is a dynamic
system where EVs are connected to the grid according to the
owners’ habits. In this paper, we model an aggregation of EVs
with a queueing network, whose structure allows us to estimate
the capacities for regulation up and regulation down, separately.
The estimated capacities from the V2G system can be used for
establishing a regulation contract between an aggregator and the
grid operator, and facilitate a new business model for V2G.

I. INTRODUCTION

Global warning is one of biggest problems of the twenty-
first century. It is becoming more evident that it has been
accelerated by the greenhouse gas (GHG) emissions caused
by human activities. Many countries and regions have set
up policies to control such GHG emissions. For example,
California has adopted the Global Warming Solutions Act of
2006 to reduce its GHG emissions to 80% of the 1990 levels
by 2050. One of the main solutions to these goals is to make
massive and effective use of renewable energy generation, e.g.,
solar, wind, and biomass.

For a reliable power system, power balancing needs to be
maintained at all times; power generation and consumption
must always be equal. Traditional power generations (e.g.,
thermal power stations) and the renewables serve in the day-
ahead and hour-ahead markets [1]. One of the most chal-
lenging problems of incorporating the renewables into the
power system is its intermittency, rendering it difficult to
predict the amount of power generated from the renewables
accurately. It is possible that the resulting generation from
those markets are excessive or deficient compared with the
predicted amount. The real-time market bridges the residual
gap between the power generation and the actual demand,
accomplished by the ancillary services, including voltage reg-
ulation, spinning reserve, supplemental reserve, replacement
reserve, and voltage control [2]. According to the U.S. Federal
Energy Regulatory Commission, ancillary services are “those

services necessary to support the transmission of electric
power from seller to purchaser given the obligations of control
areas and transmitting utilities within those control areas to
maintain reliable operations of the interconnected transmission
system” [3]. Regarding load balancing, spinning, supplemental
reserve, and replacement reserves are for contingency purposes
while voltage regulation tracks on a minute-to-minute basis. In
this paper, we focus on the ancillary service given by voltage
regulation.

There have been some studies about integrating renewables
into the grid more reliably and efficiently, such as [4]. One
proposed solution is the introduction of energy storage to defer
the excess for the future deficient. Examples of energy storage
include batteries, flywheels, and pumped water. In the near
future, one of the most realistic forms is batteries. This can be
justified by the expanding markets of plug-in hybrid electric
vehicles or simply electric vehicles (EVs). For example, it is
forecast that there will be 2.7 million EVs on the road in the
U.S. by 2020 [5]. In California, it is expected that roughly
70% of new light-duty vehicles and 60% of the fleets will be
EVs [1]. The integration of EVs into the power grid is called
the vehicle-to-grid (V2G) system, which is depicted in Fig. 1.

Regulation requires power in the order of MW while each
EV can only supply power around 10-20 kW [6]. In order to
provide regulation service from the V2G system, an aggrega-
tion of EVs is necessary and an aggregator coordinates a group
of EVs. The aggregators thus provide regulation services to the
grid, which is controlled and coordinated by the gird operators.
In general, an aggregator can be a parking infrastructure or a
facility coordinating the EV activities of the households in a
residential area.

To implement regulation in V2G, the aggregators need to
make contracts with the grid operators. The V2G system can
support both regulation up and regulation down services. The
former means that the grid does not have enough power supply
and extra power sources (e.g., V2G) provides the shortfall.
The latter refers to the situation in which extra power loads
are needed to absorb the excessive power.

One of charges for the regulation services is capacity
payment [7]. It refers to the service charges due to the
V2G system only guaranteeing power support when the grid
requires regulation up or down. In other words, the V2G
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Fig. 1. The V2G system.

system gets paid even without any actual power transfer. The
grid operator pays for the service according to the expected
amount of power to be supplied and absorbed for regulation
up and down, respectively. In this paper, we study the capacity
management of the V2G system for an aggregator which can
help estimate the total profit and set up the contract between
an aggregator and the grid operator. Due to the dynamics of
EVs and the similarities between the batteries of V2G (for
power) and the buffers of the communication networks (for
data packets), we estimate the V2G capacity for regulation
with the queueing theoretic approach, which has been widely
used for performance analysis in communication networks [8].

The rest of this paper is organized as follows. We give some
related work of the V2G studies in Section II and a system
overview in Section III. Section IV presents our analytical
model and the capacities for both regulation up and down
are derived. A performance study of the V2G system for the
power regulation services is presented in Section V. Finally,
Section VI concludes our work.

II. RELATED WORK

There are many studies on V2G since it is expected to be a
major component in the future smart grid. In [7] and [9], V2G
was systematically introduced with some preliminary studies
on the business model for V2G. They give information of
different kinds of EVs and different power markets, including
baseload power, peak power, spinning reserves, and regulation.
The merits of V2G are quick response and high-value services
with low capital costs, but V2G has shorter lifespans and
higher operating costs per kWh. The most promising service
for the V2G system in terms of regulation and spinning re-
serves are described next. They give some rough idea about the
scale of V2G so as to make it comparable with the traditional
regulation from generators. In [10], a simple M/M/c queueing
model for EV charging was devised. In [11], the capacity for
regulation is also called achievable power capacity, but it does
not consider separate capacities for regulation up and down.

[11], [12], [13] are dedicated to studying V2G regulation. In
[12], an optimal charging control scheme for maximizing the
revenue of an EV was proposed. In [13], the problem was
formulated as a quadratic program and an efficient algorithm
considering discharge was devised. [11] considers the user
pattern to develop an approximate probabilistic model for
achievable power capacity. [14] suggests an M/M/∞ queue
with random interruptions to model the EV charging process
and analyzes the dynamics with time-scale decomposition.
V2G energy trading has been studied as an auction in [15].
To the best of our knowledge, there is no unified study on the
capacity management for both regulation up and regulation
down.

III. SYSTEM OVERVIEW

Each EV is assumed to be autonomous. It can participate
and leave the V2G system according to the schedule of the
EV owner. Once an EV is connected or plugged to the system,
it will be actively charged and/or support regulation until it
departs. When actively charged, it pays for the amount of
energy consumed. While it is supporting the regulation, it
receives payment for providing the service. Regulation can
result in either EV charging or discharging, depending on
whether regulation up or down is requested. Thus, it is possible
for an EV to get paid while it is being charged (i.e., in a
regulation-down event), known as a charging event, in which
an EV requests charging itself and supports regulation, active
charging and reactive charging, respectively. A discharging
event happens only when an EV participates in supporting
regulation up. Both the residual energy stored in the battery of
the EV at the time it arrives and the energy charged from active
or reactive charging can be used to support regulation up.
However, an EV cannot support regulation up when its battery
is empty. Similarly, an EV cannot participate in supporting
regulation down when its battery is full. Since the battery
capacity is finite, the amount of energy stored in a battery
affects its potential for supporting regulation up and regulation
down services. In this paper, we aim to estimate the capacities
of an aggregator for regulation services so that it will be
beneficial for an aggregator to establish a contract with the
grid operators. Hence, we only consider the events of active
charging. The charging and discharging rates due to regulation
are small enough so that the estimated capacities for regulation
services are not affected by charging and discharging events
due to regulation.

Now, we focus on a particular aggregator. We denote the
set of EVs, each of which has registered at the aggregator for
providing the regulation service, by I. The events associated
with each EV and among EVs are independent with each other.
All EVs are assumed to be homogeneous such that each is
equipped with a battery with the same capacity when fully
charged. The state-of-charge (SOC) of an EV refers to the
amount of energy stored in its battery normalized with the
maximum capacity. We denote SOC of EV i at time t by xi(t).
Without loss of generality, we assume xi(t) ∈ [0, 1],∀i ∈ I.
We also define the target SOC of EV i as the amount of energy,
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normalized with the maximum battery capacity, that the EV’s
owner aims to reach when it departs, given in a range [xi, xi],
where xi and xi are the lower and upper limits of the target
SOC of EV i, and 0 ≤ xi ≤ xi ≤ 1. In other words, if EV i
leaves the system at time t′, it aims to satisfy xi ≤ xi(t′) ≤ xi.
If the target SOC is merely a value, we have xi = xi.

The lower SOC target threshold xi represents the minimum
targeted amount of energy, normalized with the maximum
battery capacity, retained for EV i when it departs from the
system. Hence, it is designed to meet the mobility pattern of
EV i. For example, an EV which travels a lot in between
two successive chargings requires a higher xi. If an EV can
be charged quite frequently, a lower xi may be sufficient to
support its operation. On the other hand, xi is defined for
regulation. Recall that a fully charged EV cannot provide the
regulation down service. xi < 1 means that EV i reserves
room of size (1− xi) for later regulation-down opportunities
or other purposes. At time t, if xi(t) is smaller than xi, active
charging always happens in order to bring SOC to the target
range. However, active charging must stop when xi(t) reaches
xi, since no future regulation-up event is guaranteed to happen
in order to bring SOC back to the target range.

Recall that regulation can result in charging or discharging
to an EV. We can increase xi(t) by both active and reactive
(i.e., regulation down) chargings, while we can only reduce
xi(t) by regulation up. Hence, when EV i is still connected
to the system, it will be in one of the three states according
to the value of xi(t), each of which supports different voltage
regulation services, as follows:
• State 1) xi(t) ≤ xi:

Only regulation down (reactive charging) is allowed.
• State 2) xi < xi(t) < xi:

Both regulation up and regulation down are allowed.
• State 3) xi(t) ≥ xi:

Only regulation up (discharging) is allowed.
For simplicity in the analysis, we do not consider that the

EVs are actually charged or discharged due to regulation in
this paper. Let ri(t) ≥ 0 be the active normalized charging
rate of EV i at time t and it is constant over time, i.e., ri(t) =
ri, t ≥ 0. Consider that EV i is plugged in at time t and its
SOC is xi(t). If it is actively charged at rate ri, after a time
period ∆t, we have xi(t+ ∆t) = xi(t) + ri∆t.

From the standpoint of an EV owner, the primary concern is
to charge its EV such that it has enough battery level to support
its operation. The profit derived from providing the ancillary
services is of secondary concern. In other words, an owner
considers to provide the ancillary services from its EV only
if the remaining energy (after discharging from providing the
ancillary services) is enough to support its operation. Hence,
we propose the following simple charging policy: When EV i
arrives at the system with SOC below xi, it will be actively
charged until xi is reached. Otherwise, no active charging is
required.

In fact, we can always set xi = xi to simplify the system.
EV i supports regulation down when xi(t) is below xi, and
it supports regulation up when xi(t) goes above xi. However,

suppose that xi(t) = xi supporting regulation (i.e., it can be
actually charged or discharged due to regulation). When there
exists a random sequence of regulation-up and regulation-
down requests, the EV will be oscillating between States 1
and 3 previously discussed and this will make system unstable.
The introduction of State 2 can help stabilize the system.

Note that we aim to perform capacity management by
estimating the capacities for regulation to help construct the
contract between an aggregator and a grid operator. There are
different kinds of regulation contracts in the market:
• Regulation down only:

An EV always absorbs power from the grid to provide
the service. To maximize the profit, we can simply set
xi = xi = 0 so as to reserve the largest room for energy
absorption.

• Regulation up only:
An EV always supplies power to the grid when providing
the service. To maximize the profit, we can simply set
xi = xi = 1 to preserve as much energy in the battery
as possible for future discharging events.

• Regulation up and regulation down:
Both regulation up and down are allowed. We would set
0 < xi < 1 appropriately to balance the demand for
regulation-up and -down.

In this paper, we consider the V2G system supporting
both regulation up and regulation down. We can define two
kinds of capacities for the V2G regulation services, namely,
the regulation-down capacity and regulation-up capacity. The
former refers to the total amount of energy that can be
absorbed by the system to support regulation down. Similarly,
the latter corresponds to the total amount of energy available
from the system to support regulation up. Here, we focus on
determining the regulation-up and regulation-down capacities
of one particular aggregator. The capacity of the whole V2G
system can then be seen as the sum of the capacities of
the individual aggregators. In the next section, we propose
an analytical model to estimate the two capacities of an
aggregator for our charing policy.

IV. ANALYTICAL MODEL

In this section, we model an aggregator with a queueing
network. We first define the settings of the model from the
system discussed in Section III and give some assumptions.
Then, we construct a queueing network, which is used to
estimate the metrics of interest, i.e., the available capacities
for regulation up and regulation down.

A. Settings

The V2G system is modelled as a queueing network with
three queues, namely, the regulation-down queue (RDQ),
regulation-up-and-down queue (RUDQ), and regulation-up
queue (RUQ). When an EV is plugged in at time t, the decision
to join which queue depends on its SOC xi(t). If it is in
States 1, 2, and 3 (defined in Section III) at time t, it will
join the RDQ, RUDQ, and RUQ, respectively. After joining a
particular queue, the following will happen:

444



1) RDQ: Each EV i in this queue is actively charged at
its own normalized charging rate ri. If its SOC reaches x at
time t′, i.e., xi(t′) = x, it will leave RDQ and join RUDQ.
The duration is determined by:

∆t = t′ − t =
xi − xi(t)

ri
, xi(t) < xi. (1)

When an EV is actively charged, it gets served in the queue.
It is also possible for it to depart from the queue before its
SOC has reached x. This represents the situation that it quits
the system.

2) RUDQ: When EV i arrives at this queue, it will be
actively charged at the normalized charging rate ri until its
SOC reaches xi. If the charging process starts at time t and
the EV is charged to xi at time t′, the duration is given by:

∆t = t′ − t =
xi − xi(t)

ri
, xi < xi(t) < xi. (2)

If the EV joins from RDQ, we have:

∆t = t′ − t =
xi − xi
ri

. (3)

After charging up to xi, the EV departs from this queue and
goes to RUQ. Similar to RDQ, a departure of an EV from the
queue before its SOC reaching x represents that the EV leaves
the system.

3) RUQ: When an EV joins this queue, no active charging
takes place. It will stay in this queue until it departs from the
system.

B. Assumptions

We make the following assumptions to make the analysis
mathematically tractable:

1) The events associated with each EV and among EVs
are independent with each other. Each EV arrives at
the system randomly, by following a Poisson process
at rate λ. Among the EV arrivals, fractions p1, p2, and
p3 of EVs are in States 1, 2, and 3, respectively, where
p1, p2, p3 ∈ [0, 1] and p1 + p2 + p3 = 1.

2) There exists a smart charging mechanism MSC :
(xi(t), xi, xi) 7→ ri, which assigns the normalized
charging rate ri to EV i according to its current SOC
xi(t) upon its arrival at time t, and its target SOC
thresholds xi and xi. The durations of EVs in States
1 and 2 (refer to (1), and (2) and (3), respectively) are
exponentially distributed at rates µ1 and µ2, respectively.

3) There exists a fraction q1 of EVs in State 1 which will
directly quit the system. This fraction represents those
EVs whose SOCs do not reach their lower target SOC
limits at their departures from the system. Similarly, we
have a fraction q2 of EVs to depart from the system in
State 2. Note that q1 and q2 already capture those EVs
which require fast charging. In other words, they may
only stay in the system for a short period of time.

4) When an EV is in State 3, no charging would happen.
It will remain on standby in the system for a period
exponentially distributed with rate µ3.

∞λ1

+ ∞

∞+

λ2

λ3

λ12

λ23

q1

1 − q2

q2

RDQ
p1

p2

p3

1 − q1

λ
RUDQ

RUQ

µ1

µ2

µ3

Fig. 2. The queueing model.

Poisson arrivals and exponentially distributed durations of
EVs residing in the systems are assumptions. The values of p1,
p2, q1, and q2 can be determined by statistical measurements
from the operations of the charging facilities. The design of
MSC is out of the scope of this paper and we will consider it
as part of the future work.

C. Model

Fig. 2 depicts the queueing model, where RDQ, RUDQ,
and RUQ model the behaviours of EVs in States 1, 2, and
3, respectively. Assumption 1 states that we randomly split
the EV arrival process into three subprocesses according to
the probability distribution (p1, p2, p3). Since random split-
ting results in independent Poisson subprocesses, the external
arrivals at each queue constitute a Poisson process with rate
λ1 for RDQ, λ2 for RUDQ, and λ3 for RUQ, where λ1 = p1λ,
λ2 = p2λ, and λ3 = p3λ.

When an EV enters RDQ, active charging starts immedi-
ately. In other words, all EVs in this queue can get served
without queueing up. With Assumption 2, an EV resides in
this queue with a duration exponentially distributed with rate
µ1. Hence, RDQ can be modelled as an M/M/∞ queue with
arrival rate λ1 and service rate µ1. According to [16], the
probability p1,n of having n EVs in this queue in the steady
state is:

p1,n =
(λ1

µ1
)ne−(

λ1
µ1

)

n!
. (4)

The expected number L1 of EVs charging in RDQ is:

L1 =

∞∑
n=1

np1,n =
λ1
µ1

=
p1λ

µ1
. (5)

By Burke’s theorem [17], the departure process of RDQ
is a Poisson process with rate λ1. With Assumption 3, this
Poisson process is split randomly according to the probability
distribution (q1, 1 − q1). (1 − q1) of EVs enter RUDQ with
rate λ12 = (1 − q1)λ1, which superposes with the Poisson
subprocess for the external arrivals with rate λ2. Since the
superposition of Poisson processes is still a Poisson process,
the combined arrivals to RUDQ constitute a Poisson process
with rate (λ2 + λ12). Similar to RDQ, RUDQ can also be
modeled as an M/M/∞ queue with the arrival rate (λ2+λ12)
and the service rate µ2. Hence, the probability p2,n of having
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n EVs in this queue is:

p2,n =
(λ2+λ12

µ2
)ne−

λ2+λ12
µ2

n!
. (6)

The expected number L2 of EVs charging in RUDQ is given
by:

L2 =
λ2 + λ12

µ2
=
λ(p1 + p2 − p1q1)

µ2
. (7)

With Assumption 3, the departure process is Poisson with
rate (λ2 + λ12), which is split randomly according to the
probability distribution (q2, 1−q2). (1−q2) of EVs enter RUQ
as a Poisson process with rate λ23 = (λ2 + λ12) · (1− q2) for
RUQ. The combined arrival process of RUQ is also a Poisson
process with rate (λ3+λ23). With Assumption 4, RUQ can be
modelled as an M/M/∞ queue with arrival rate (λ3 + λ23)
and service rate µ3. Therefore, the probability p3,n of having
n EVs in this queue is:

p3,n =
(λ3+λ23

µ3
)ne−

λ3+λ23
µ3

n!
. (8)

The expected number L3 of EVs standing by in RUQ can
be expressed as:

L3 =
λ3 + λ23

µ3
=
λ(1− p1q1 − p1q2 − p2q2 + p1q1q2)

µ3
.

(9)

The overall system departure process is a Poisson process
superposed by three individual departure Poisson processes
from the three queues. The overall departure process has rate:

λ = q1λ1 + q2(λ2 + λ12) + (λ3 + λ23). (10)

The duration of each regulation service ∆treg is normally
short, such as a few minutes [2], while EVs are expected
to switch their states in a relatively much lower rate. Thus,
the mean service times of the queues, 1

µ1
, 1
µ2

, and 1
µ3

are
generally much longer than a few minutes. This is justifiable
as an EV cannot be charged up nor leave the system within a
few minutes on the average. For each EV, the amount of power
PEV contributed for a regulation event can be determined with
the amount of energy required ∆xEV by:

PEV =
∆xEV
∆treg

. (11)

As an aggregator normally coordinates hundreds of EVs,
PEV contributed by a single EV is small. Hence, ∆xEV would
be even smaller. For a particular regulation contract with the
fixed regulation service duration ∆treg, we can fix PEV to
be small enough such that the probability of having a state
transition of an EV after an absorption or a removal of energy
of ∆xEV for a regulation service is almost negligible.1 There-
fore, the capacities for the regulation services can be estimated
based on the numbers of EVs available for regulation. Due
to the types of regulation supported by EVs as described in

1Interested readers can refer to Section V for some numerical figures.

Section III, the steady state capacity for regulation down CRD
can be computed as:

CRD = PEV (L1 + L2). (12)

Similarly, the steady state capacity for regulation up CRU
is given by:

CRU = PEV (L2 + L3). (13)

V. PERFORMANCE EVALUATION

We study a particular scenario in a parking infrastructure,
where EVs arrive and leave independently. On the average,
there are five EVs entering the parking structure per minute.
90% of EVs require charging, where their SOCs are below
their upper target thresholds at their arrivals. One tenth of
them do not, since they need parking only and their SOCs are
above their respective upper target thresholds. Among those
requiring a charge, two thirds have SOCs below the lower
target thresholds (State 1). Hence, we have p1 = 0.6, p2 = 0.3,
and p3 = 0.1. For those EVs in State 1, they spend 40 minutes
in this state on the average. When they exit State 1, 10% of
them leave the system, while the other 90% of them transit
to State 2 and continue to charge up their batteries to their
upper target thresholds with a mean service time of 50 minutes.
One fifth of them leave the system from State 2. Hence, we
have q1 = 0.1 and q2 = 0.2. The rest of the EVs stay in
State 3 (without charging) with the mean residence time equal
to 30 minutes. Thus, RDQ, RUDQ, and RUQ in the model
serve EVs with mean service times of 40 minutes, 50 minutes,
and 30 minutes, respectively. By (5), (7), and (9), the expected
numbers of EVs in States 1-3 are L1 = 120, and L2 = 210,
and L3 = 115.8 in the steady state.

We set PEV = 6 kW and ∆treg = 1 minute. Thus, each EV
absorbs or delivers 0.1 kWh for each regulation service. When
compared with the EV models already available in the market,
such small charging and discharging rates of PEV result in a
regulation event where the involved EVs do not switch states
when supporting regulation (i.e., no transition to other queues
merely for regulation). For example, the Tesla Model S has
a battery capacity ranging from 40 kWh to 85 kWh [18],
and BYD e6 has a battery capacity of 60 kWh [19]. With
(12) and (13), the expected capacities for regulation down and
regulation up are:

CRD = 6 kW× (120 + 210) = 1.98 MW (14)

and

CRU = 6 kW× (210 + 115.8) = 1.9548 MW. (15)

We simulate the instantaneous numbers of EVs getting
served in the queues for 2000 minutes. The simulation was
done with SimEvents of Matlab. The results are exhibited
in Fig. 3. The system is initially empty and it takes about
200 minutes to reach the steady state, where the numbers of
EVs in the queues oscillate around our computed expected
values.
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Most of the parameters in our model, including λ,
(p1, p2, p3), µ3, q1, and q2, cannot be controlled generally but
they can be determined from the scenario of study statistically.
Recall that there exists a smart charging mechanism MSC ,
which assigns the active charging rates to EVs. In other
words, we can adjust µ1 and µ2 through proper design of
MSC . However, the values of µ1 and µ2 may affect the
capacities CRD and CRU . Here, we adopt the settings identical
to the previous case study, except for µ1 and µ2. Fig. 4
shows the capacities corresponding to different combinations
of µ1 and µ2. From the figure, we can see that CRD is
more sensitive to the values of µ1 and µ2 than CRU . If an
aggregator makes a balanced contract between regulation up
and regulation down with a grid operator, the values of µ1

and µ2 should be carefully set so that the expected capacities
are close to each other. For example, µ1 = 1

40 min−1 and
µ2 = 1

50 min−1 in our case study produce the near-balanced
capacities CRD = 1.98 MW and CRU = 1.9548 MW.

VI. CONCLUSIONS

Due to high penetration of renewable energy generation in
smart grid, the stochastic nature of the renewables will induce
new challenges in matching the actual power consumption
and supply. One measure to enforce power balance is through
voltage regulation. Traditional regulation services are mainly
run by power plants and very costly. The increasing social
consensus on environmentally friendly transportation would
lead to more reliance on EVs. With the embedded rechargeable
batteries in EVs, a fleet of EVs can behave as a huge energy
buffer, absorbing excessive power from the smart grid or
supplying power to overcome the deficit. This implies that

an aggregation of EVs is a practical alternative to support the
regulation services of smart grid. However, V2G is a dynamic
system. Each EV connects to and disconnects from the system
independently. In this paper, we model an aggregation of
EVs with a queueing network. The structure of the queueing
network allows us to estimate the capacities for regulation up
and regulation down separately. The estimated capacities can
help set up the regulation contract between an aggregator and
a grid operator so as to facilitate a new business model for
V2G.
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